Featured Research

from universities, journals, and other organizations

Coal-eating Bacteria May Improve Methane Recovery

Date:
September 12, 2003
Source:
Brookhaven National Laboratory
Summary:
Scientists at the U.S Department of Energy's Brookhaven National Laboratory are exploring the use of bacteria to increase the recovery of methane, a clean natural gas, from coal beds, and to decontaminate water produced during the methane-recovery process.

NEW YORK, NY -- Scientists at the U.S Department of Energy's Brookhaven National Laboratory are exploring the use of bacteria to increase the recovery of methane, a clean natural gas, from coal beds, and to decontaminate water produced during the methane-recovery process.

Methane gas, which burns without releasing sulfur contaminants, is becoming increasingly important as a natural gas fuel in the U.S. But the process of recovering methane, which is often trapped within porous, unrecovered or waste coal, produces large amounts of water contaminated with salts, organic compounds, metals, and naturally occurring radioactive elements. "Our idea is to use specially developed bacteria to remove the contaminants from the wastewater, and also help to release the trapped methane," says Brookhaven chemist Mow Lin.

Lin's team has developed several strains of bacteria that can use coal as a nutrient and adsorb or degrade contaminants. They started with natural strains already adapted to extreme conditions, such as the presence of metals or high salinity, then gradually altered the nutrient mix and contaminant levels and selected the most hardy bugs (for more, see: http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr121101.htm).

In laboratory tests, various strains of these microbes have been shown to absorb contaminant metals, degrade dissolved organics, and break down coal in a way that would release trapped methane. The use of such microbe mixtures in the field could greatly improve the efficiency and lower the associated clean-up costs of coal-bed methane recovery, Lin says.

To learn more about this work, see the talk given by Lin during the Division of Fuel Chemistry's "Synthetic Clean Fuels from Natural Gas and Coalbed Methane: 30 Years Progress Since the First Oil Crisis" session on Thursday, September 11, 2003, at 3:30 p.m. at the Jacob Javits Convention Center, Room 1A13. This research was funded by grants for high-school and undergraduate student research at Brookhaven Lab from Brookhaven Science Associates and DOE's Office of Science.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Coal-eating Bacteria May Improve Methane Recovery." ScienceDaily. ScienceDaily, 12 September 2003. <www.sciencedaily.com/releases/2003/09/030912073359.htm>.
Brookhaven National Laboratory. (2003, September 12). Coal-eating Bacteria May Improve Methane Recovery. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2003/09/030912073359.htm
Brookhaven National Laboratory. "Coal-eating Bacteria May Improve Methane Recovery." ScienceDaily. www.sciencedaily.com/releases/2003/09/030912073359.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins