Featured Research

from universities, journals, and other organizations

Zebrafish Studies Provide Insight Into Blood-cell Formation

Date:
September 23, 2003
Source:
Howard Hughes Medical Institute
Summary:
Researchers tracking down the cause of anemia in mutant zebrafish embryos have discovered a protein that guides the creation of new blood cells.

Researchers tracking down the cause of anemia in mutant zebrafish embryos have discovered a protein that guides the creation of new blood cells.

Related Articles


The researchers, led by Howard Hughes Medical Institute (HHMI) investigator Leonard I. Zon and HHMI associate Alan J. Davidson at Children's Hospital, Boston, published their findings in the September 18, 2003, issue of the journal Nature. Zon and Davidson collaborated with researchers at Dana-Farber Cancer Institute, the Whitehead Institute for Biomedical Research at MIT, the Max Planck Institute for Developmental Biology in Germany and the University of Rochester.

In the initial discovery that sparked the study, researchers observed that a zebrafish embryo with a mutation called kugelig (kgg) developed a lethal anemia in addition to having a malformed tail.

"After evaluating the kgg mutant for blood-forming stem cells, we realized that its mutation seemed to affect the genetic program for creating blood cells," said Zon. "The program for making blood vessels looked perfectly normal, but there seemed to be some specificity there that made us want to explore this mutant further." Stem cells are immature progenitor cells that give rise to more specialized cells that form tissues and organs.

The researchers traced the genetic defect in the kgg mutant zebrafish to a gene called cdx4. This gene is a member of a family of "caudal" genes that other researchers had shown were regulators of a key suite of genes called hox genes that control development. Hox genes are known to govern the pattern of body formation in animals, but "nobody had thought about this combination of caudal genes and hox genes as regulating stem cells, and in particular blood stem cells," said Zon.

When the researchers eliminated cdx4 from normal zebrafish, they observed the same defects that they saw in the kgg mutants. Conversely, injecting the normal cdx4 gene into kgg mutants "rescued" them from the defect.

To see whether the cdx4 gene actually controlled hox genes, the researchers overexpressed various members of the hox gene family into the mutant zebrafish. The researchers found that some hox genes, but not others, restored blood formation in the kgg zebrafish.

"So it seems as if there are specific hox genes that actually regulate blood cells, and others that aren't so important," said Zon. "By doing those sets of experiments, we were able to say definitively that cdx4 controlled some hox genes, and that it regulated blood development."

In further tests to define the regulatory role of cdx4, the researchers overexpressed cdx4 in normal zebrafish. "We found that the middle part of the embryo, or mesoderm, which does not normally consist of blood cells, converted to blood cells," said Zon. "So, we demonstrated that overexpressing cdx4 changed hox gene expression, and also altered the fate of this mesoderm to actually become blood-forming," he said.

"That was a real surprise, because for years we had been looking for some regulatory factor that would actually change the middle part of the embryo into blood, altering its fate, but we hadn't been able to find such a component," he said.

To extend their findings to mammals, the researchers studied the Cdx4/Hox machinery in mouse embryonic blood-forming stem cells. They found that overexpressing Cdx4 in the mouse embryonic stem cells both altered the expression of mouse Hox genes and caused a pronounced expansion in the numbers of hematopoietic progenitor cells.

According to Zon, the group's findings not only increase understanding of the embryonic blood-forming machinery, but they could also help reveal how it can go awry in human leukemias.

"We know that a human cousin of cdx4, called CDX2, produces leukemia when it fuses to a gene called TEL," said Zon. He and his colleagues believe that this fusion disrupts the normal HOX-regulating function of the cell and transforms it into a leukemic cell. Similarly, he said, the gene MLL, whose involvement in abnormal fusion proteins has been implicated in leukemia, might also be related to the cdx4/hox signaling machinery.

"So, we believe there is a subset of leukemias that are caused by MLL fusions, CDX fusions, and even HOX fusions," said Zon. "Now, with this zebrafish system, we can really begin to understand the role that the specific hox and cdx genes play during normal hematopoietic development. We can introduce the genes one by one into the kgg mutant and test whether and how they participate in such development."


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Zebrafish Studies Provide Insight Into Blood-cell Formation." ScienceDaily. ScienceDaily, 23 September 2003. <www.sciencedaily.com/releases/2003/09/030922063817.htm>.
Howard Hughes Medical Institute. (2003, September 23). Zebrafish Studies Provide Insight Into Blood-cell Formation. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2003/09/030922063817.htm
Howard Hughes Medical Institute. "Zebrafish Studies Provide Insight Into Blood-cell Formation." ScienceDaily. www.sciencedaily.com/releases/2003/09/030922063817.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins