Featured Research

from universities, journals, and other organizations

When Heme Attacks: After Trauma, The Molecule That Makes Life Possible Rampages

Date:
October 3, 2003
Source:
University Of Pennsylvania Medical Center
Summary:
Heme, the iron-bearing, oxygen-carrying core of hemoglobin, makes it possible for blood to carry oxygen, but researchers from the University of Pennsylvania School of Medicine have determined how free-floating heme can also make traumatic events worse by damaging tissue.

Philadelphia, PA -– Heme, the iron-bearing, oxygen-carrying core of hemoglobin, makes it possible for blood to carry oxygen, but researchers from the University of Pennsylvania School of Medicine have determined how free-floating heme can also make traumatic events worse by damaging tissue. The Penn researchers present their findings in the October 2nd issue of the journal Nature. Fortunately, the researchers also identified a chemical that can be targeted by drug developers to impede the deleterious effects of free-floating heme.

Following a traumatic event – such as an accident, a stroke, a heart attack or even surgery – heme floods the spaces between and inside cells and exacerbates the damage. It does so by shutting down an important cell membrane channel, an action that kills neurons and constricts blood vessels. While investigating this process, the researchers also determined that a chemical called NS1619 restores the function of the cell membrane channel. NS1619 and its derivatives could be the source for a new drug – one that prevents the secondary events that worsen trauma damage.

"Following a heart attack, a stroke, or any really severe physical injury, heme is literally shaken loose from hemoglobin," said Xiang Dong Tang, MD, PhD, Staff Scientist in Penn's Department of Physiology. "Normally, cells can compensate and recycle loose heme. But when larger concentrations are released, heme can gum up the works, specifically the Maxi-K ion channel, a cell membrane protein important for blood vessel relaxation and neuron excitability."

Maxi-K is a channel that moves potassium ions out of cells. In the Nature paper, Tang and his colleagues prove that the Maxi-K protein possesses sites that bind heme. If these sites were removed or altered, heme could not effect Maxi-K proteins.

"Maxi-K is found in the lining of blood vessels. When it is turned off, the vessel constricts, increasing blood pressure, which is decidedly not beneficial following a heart attack, " said Toshinori Hoshi, PhD, Associate Professor in Penn's Department of Physiology and co-author of the Nature article. "In neurons, disrupting Maxi-K leads to excessive calcium accumulation. Eventually, this ionic buildup triggers cell suicide and, therefore, the loss of the neuron."

The chemical heme is essential for most forms of life. It exists in hemoglobin for oxygen transport, in cytochromes for cellular energy production, and in guanylate cyclase for blood pressure regulation. The molecule itself is tiny, a flat snowflake of a carbon framework surrounding a single atom of iron, but it is crucial for the cellular process of respiration and the action of nirtroglycerine.

"Generally, the heme molecule is attached to larger molecules, such as hemoglobin, but it is easily set loose. Indeed, there is an entire cellular industry behind recycling and reusing 'lost' heme," said Tang. "But that system can get overwhelmed in times of serious trauma and bleeding."

Studying the heme recycling system might prove useful in developing treatments for preventing the secondary damage set off by heme. Certain cells, such as neurons, do have ways of transporting heme. If the 'heme transport' is identified and the specific blocker is found, it could help prevent symptoms resulting from trauma and bleeding.

Meanwhile, according to Tang and his colleagues, there is already a known agent that can relieve Maxi-K from heme inhibition. NS1619 is known as the "Maxi-K opener," and, as the researchers have shown, readily reverses the heme-mediated inhibition.

"I can envision the use of a drug similar to NS1619 as an emergency treatment," said Tang. "In the emergency room, after an accident or heart attack, it could be used to keep the damage from continuing on a cellular level – before it could result in bad effects for the entire body."

Scientists also contributing to this research include Rong Xu from Penn, Mark F. Reynolds, from St. Joseph's University, Marcia L. Garcia, from Merck Research Laboratories, and Stefan H. Heinemann, from Friedrich Schiller University. Funding for this research came from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "When Heme Attacks: After Trauma, The Molecule That Makes Life Possible Rampages." ScienceDaily. ScienceDaily, 3 October 2003. <www.sciencedaily.com/releases/2003/10/031002055731.htm>.
University Of Pennsylvania Medical Center. (2003, October 3). When Heme Attacks: After Trauma, The Molecule That Makes Life Possible Rampages. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2003/10/031002055731.htm
University Of Pennsylvania Medical Center. "When Heme Attacks: After Trauma, The Molecule That Makes Life Possible Rampages." ScienceDaily. www.sciencedaily.com/releases/2003/10/031002055731.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Generics Eat Into Pfizer's Sales

Generics Eat Into Pfizer's Sales

Reuters - Business Video Online (July 29, 2014) Pfizer, the world's largest drug maker, cut full-year revenue forecasts because generics could cut into sales of its anti-arthritis drug, Celebrex. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Nigeria Ups Ebola Stakes on 1st Death

Nigeria Ups Ebola Stakes on 1st Death

Reuters - Business Video Online (July 29, 2014) Nigerian authorities have shut and quarantined a Lagos hospital where a Liberian man died of the Ebola virus, the first recorded case of the highly-infectious disease in Africa's most populous economy. David Pollard reports Video provided by Reuters
Powered by NewsLook.com
Running 5 Minutes A Day Might Add Years To Your Life

Running 5 Minutes A Day Might Add Years To Your Life

Newsy (July 29, 2014) According to a new study, just five minutes of running or jogging a day could add years to your life. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Poses Little Threat To U.S.: CDC

Ebola Outbreak Poses Little Threat To U.S.: CDC

Newsy (July 29, 2014) The Ebola outbreak in West Africa poses little threat to Americans, according to officials with the Centers for Disease Control and Prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins