Featured Research

from universities, journals, and other organizations

Nucleons Go Two-by-Two

Date:
January 2, 2004
Source:
Thomas Jefferson National Accelerator Facility
Summary:
Just as people behave differently as couples than as individuals, protons and neutrons (also known as nucleons) inside the nucleus of the atom behave differently in pairs.

Just as people behave differently as couples than as individuals, protons and neutrons (also known as nucleons) inside the nucleus of the atom behave differently in pairs.

Related Articles


Scientists using the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) have just completed one of the first clear measurements of nucleon pairs in nuclei. Their findings are reported in a paper recently accepted by the journal Physical Review Letters, "Two-Nucleon Momentum Distributions Measured in 3He(e,e'pp)n."

Physicists directed Jefferson Lab's continuous electron beam at an energy of 2.2 GeV (billion electron volts) toward a target of helium-3 nuclei. Unlike ordinary helium nuclei, helium-3 is made up of three nucleons, two protons and a neutron. The scientists then reconstructed the subatomic collisions with the unique CEBAF Large Acceptance Spectrometer (CLAS) in Hall B, one of Jefferson Lab's three experimental halls.

"Nuclear Physicists have spent the last 30 years measuring the behavior of single protons in nuclei," explains Larry Weinstein, professor of Physics at Old Dominion University and Chair of the CLAS Collaboration. "Thanks to the capabilities of the CLAS spectrometer (and a bit of luck), we have now taken an important step toward measuring the behavior of protons in pairs."

To help visualize the particles' movements Weinstein compares them to people exhibiting human behavior. While most people tend to pair up, only about a quarter of nucleons exist in pairs at a time. Human relationships can endure for decades, but nucleon pairs last only a fraction of a second. However, like some people, at great distances nucleons seemingly ignore each other, at medium distances they attract each other and when they get too close, they violently repel each other.

Weinstein's experiment measured the behavior of very close nucleon pairs. He, along with ODU graduate student Rustam Niyazov and their collaborators, reconstructed billions of collisions to find the 3,000 events where one of the three nucleons of helium-3 was knocked out cleanly, leaving behind an almost undisturbed nucleon pair. Unpaired nucleons move relatively slowly, with a speed that rarely exceeds 20 percent of the speed of light. The paired nucleons were measured to have speeds up to 60 percent of the speed of light, providing clear experimental evidence of the strong interactions between two nucleons.

Rustam Niyazov worked on this experiment for his graduate thesis and is now a postdoctoral fellow at Jefferson Lab. He says there are two main reasons why nobody has measured this reaction before. Firstly, it's very hard to extract a clean signal; there are so many interactions between final-state particles that the signals of interest are hidden. And secondly, the CLAS detector allows scientists to measure the final states of many particles.

Weinstein echoes Niyazov's comment. "What makes CLAS unique for this experiment is that you're measuring everything," says Weinstein. "That means you can discover patterns in the data that you would never have gotten otherwise, and greatly increases the scope for pleasant surprises."

"The 'a-ha' moment came about three years ago, 10 years after first proposing the experiment and one year after running it," says Weinstein. But then, physicists have been waiting 30 years for measurements of paired nucleons.

CEBAF at Jefferson Lab emits high-energy beams of electrons that are used to study the nucleus of the atom. In this experiment, particles from the collision were detected in the CEBAF Large Acceptance Spectrometer. The CLAS is designed to detect almost all of the charged elementary particles (electrons, protons and pions, etc.) that emerge from an electron-nucleus collision. The spectrometer, a 30-foot diameter, multimillion-dollar particle detector, has six layers of detectors arranged around a toroidal superconducting magnet.

Jefferson Lab is a basic research, nuclear physics user facility managed by the U.S. Department of Energy and operated by the Southeastern Universities Research Association, a consortium of 61 universities. Old Dominion University is a state-assisted university located in Norfolk, Va. The university's nuclear physics program includes 11 tenured, internationally known faculty. Nuclear physics research at Old Dominion is supported in part by grants from the Department of Energy.


Story Source:

The above story is based on materials provided by Thomas Jefferson National Accelerator Facility. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson National Accelerator Facility. "Nucleons Go Two-by-Two." ScienceDaily. ScienceDaily, 2 January 2004. <www.sciencedaily.com/releases/2004/01/040102072547.htm>.
Thomas Jefferson National Accelerator Facility. (2004, January 2). Nucleons Go Two-by-Two. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2004/01/040102072547.htm
Thomas Jefferson National Accelerator Facility. "Nucleons Go Two-by-Two." ScienceDaily. www.sciencedaily.com/releases/2004/01/040102072547.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) — Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) — In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) — China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
Latest Minivan Crash Tests Aren't Pretty

Latest Minivan Crash Tests Aren't Pretty

Newsy (Nov. 20, 2014) — Five minivans were put to the test in head-on crash simulations by the Insurance Institute for Highway Safety. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins