Featured Research

from universities, journals, and other organizations

Sediment Samples Suggest How Plants Would Fare In Hotter, Drier Future

Date:
January 14, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
Sediment samples dating back thousands of years and taken from under the deep water of West Olaf Lake in Minnesota have revealed an unexpected climate indicator that can be factored into future projections.

CHAMPAIGN, Ill. -- Sediment samples dating back thousands of years and taken from under the deep water of West Olaf Lake in Minnesota have revealed an unexpected climate indicator that can be factored into future projections.

In the Jan. 13 issue of the Proceedings of the National Academy of Sciences, scientists at the University of Illinois at Urbana-Champaign report that native C4 plants did not fare well during prolonged periods of severe drought that occurred in the middle Holocene (4,000 to 8,000 years ago).

C4 plants, so designated because of their biochemical pathway of photosynthesis, are generally expected to do well in warmer, drier climates driven by rising levels of carbon dioxide. Elevated carbon dioxide concentrations alone should favor C3 plants, which use another photosynthesis pathway. While the middle Holocene had much lower levels of carbon dioxide, the general climate conditions of that time provide a good model for study, said Feng Sheng Hu, a professor in the plant biology and geology departments at Illinois.

The sediment from West Olaf Lake, which contains residue of plant life, indicates that weedy C3 plants such as Ambrosia (ragweed) adapted well during severe-drought episodes because of their ability to exploit very limited amounts of water available during the growing season, said David M. Nelson, lead author of the paper and a doctoral student in ecology and evolutionary biology working with Hu.

The findings suggest that even C4 plants could face disastrous consequences during long periods of drought, despite the fact that they use water more efficiently than C3 plants, Nelson said. Barren areas unsuitable for agriculture may be much more extensive in the Midwest under warmer, drier conditions predicted for the future, he said.

"Previous studies of past grassland change have been hampered by the fact that pollen grains of grasses cannot be separated into species, making it difficult to understand climate adaptations of C3 and C4 plants during the middle Holocene," Hu said. "This study offers a new details about grassland responses to long periods of severe drought."

The researchers analyzed and compared sediment from West Olaf Lake with samples from Steel Lake, about 75 miles northeast in Hubbard County. Today West Olaf Lake is along the border of the Great Plains and the more hilly deciduous forest of west central Minnesota. Steel Lake is in more geographically diverse terrain that features a dense coniferous forest that was less susceptible to long-term drought.

The middle Holocene C3 and C4 estimates of the two lakes were based on an analysis of carbon isotopes in charcoal particles produced by fires and well preserved in the stratified layers of sediment. Because of the presence of aragonite, a carbonate mineral, at West Olaf Lake, climate data were extracted by using X-ray diffraction. Climate conditions at Steel Lake came from oxygen-18 isotope levels.

"These analyses gave a picture of precipitation and aridity over time," Nelson said. "At West Olaf Lake, during the most severe, long droughts in the early years of the middle Holocene, C4 plants were low in abundance. Only as temperatures cooled and moisture availability rose later in the middle Holocene did C4 plants increase in abundance."

The West Olaf Lake area was rich in weeds such as Ambrosia during the Holocene's drier middle years. During the period's early years, severe droughts limited plant productivity, reducing the accumulation of flammable fuels. During the milder, wetter later years of the period, rising C4 plant productivity coincided with an increase of fires.

At Steel Lake, C4 plants were abundant in the middle Holocene. Researchers did not see the inverse relationship between C4 plants and drought, which were not as severe.

###

The study was funded by a Packard Fellowship in Science and Engineering and by a National Science Foundation grant to Hu. Carbon dating was done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in California.

Other contributing authors on the paper were Jian Tian, a doctoral student in geology at Illinois, Ivanka Stefanova of the University of Minnesota and Thomas A. Brown of the Lawrence Livermore National Laboratory.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Sediment Samples Suggest How Plants Would Fare In Hotter, Drier Future." ScienceDaily. ScienceDaily, 14 January 2004. <www.sciencedaily.com/releases/2004/01/040114075615.htm>.
University Of Illinois At Urbana-Champaign. (2004, January 14). Sediment Samples Suggest How Plants Would Fare In Hotter, Drier Future. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2004/01/040114075615.htm
University Of Illinois At Urbana-Champaign. "Sediment Samples Suggest How Plants Would Fare In Hotter, Drier Future." ScienceDaily. www.sciencedaily.com/releases/2004/01/040114075615.htm (accessed September 30, 2014).

Share This



More Plants & Animals News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com
Argentina Worries Over Decline of Soybean Prices

Argentina Worries Over Decline of Soybean Prices

AFP (Sep. 27, 2014) The drop in price of soy on the international market is a cause for concern in Argentina, as soybean exports are a major source of income for Latin America's third largest economy. Duration: 01:10 Video provided by AFP
Powered by NewsLook.com
Mama Bear, Cubs Hang out in California Backyard

Mama Bear, Cubs Hang out in California Backyard

Reuters - US Online Video (Sep. 27, 2014) A mama bear and her two cubs climb trees, wrestle and take naps in the backyard of a Monrovia, California home. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins