Featured Research

from universities, journals, and other organizations

New Antioxidants Are 100 Times More Effective Than Vitamin E

Date:
February 2, 2004
Source:
Vanderbilt University
Summary:
An international team of chemists has developed a new family of antioxidants that are up to 100 times more effective than Vitamin E.

An international team of chemists has developed a new family of antioxidants that are up to 100 times more effective than Vitamin E.

Related Articles


"Vitamin E is nature's antioxidant and people have been trying to improve upon it for more than 20 years with only marginal success. We have taken a very big step in the right direction," says Ned A. Porter, the Stevenson Chair of Chemistry at Vanderbilt. He supervised the development, which was published in the European journal Angewandte Chemie International Edition. The university has a patent pending on the new compounds.

Antioxidants are molecules that can counteract the damaging effects of oxygen in tissues and other materials. So far, the new antioxidants have been tested "in vitro" – in the test tube. But studies with biological molecules, such as cholesterol, suggest that the new compounds have properties that could make them suitable for dietary supplements. Shortly, Vanderbilt researchers expect to begin the lengthy process of determining how effective the new the compounds are in living animals and whether they have any harmful side effects.

The market for antioxidants in North America is estimated at more than $800 million per year. Even if the compounds do not prove suitable as dietary supplements or neutraceuticals, they could still have practical value. Many materials used for commerce can be damaged by oxygen and so are routinely treated with antioxidants. These materials include plastics, rubber, fuels and lubricants, agricultural feed and cosmetics.

The approach that led to the new antioxidants was the idea of Vanderbilt graduate student Derek Pratt: "The summer before I came to Vanderbilt, I was at a conference in New Hampshire where several presentations dealt with antioxidants. It just occurred to me that this was an approach that hadn't been tried before."

At the time, Pratt was an undergraduate at Carlton University in Ottawa and was working with Keith Ingold at the National Research Council in Canada. When Pratt explained his idea to Ingold, the prominent chemist advised him to "keep this one for yourself."

So Pratt brought the idea with him when he came to Vanderbilt to work with Porter. "When Derek suggested this project, I was immediately intrigued," says Porter. "And it has turned out to be one of the most interesting projects I've ever been involved with."

Vitamin E, whose chemical name is -tocopherol, is a phenol: It contains a ring made of six carbon atoms with a hydroxyl group (OH) attached. Ingold, among others, had tried to make better antioxidants by attaching a nitrogen atom to the carbon ring. Theoretically, these molecules should be stronger antioxidants but they proved to be impractical because they were unstable in air.

In addition to attaching a nitrogen atom to the ring, Pratt's idea was to substitute a nitrogen atom for one of the carbon atoms in the ring itself. With both substitutions he predicted that the resulting molecules, called pyridinols, should be more stable in air.

Then Pratt had to address the question of whether the resulting molecules would be effective antioxidants. He did so by analyzing the properties of existing antioxidants to determine what made them effective. Once he had done this, he performed a theoretical analysis to determine whether pyridinols should also have these properties. When his analysis confirmed that they would, "the pace really picked up," he says.

Porter teamed Pratt with Maikel Wijtmans, another graduate student working in his lab interested in synthesizing new molecules. "Actually, once you think of it, it's really a pretty simple substitution," says Pratt. Still, it took a year to work out a 12-step process that produced the most effective member of this new class of compounds in quantities large enough for testing.

In order to assess their effectiveness as antioxidants, the Vanderbilt chemists sent samples to Luca Valgimigli in Professor G. F. Pedulli's lab at the University of Bologna. The Italian laboratory is one of the few in the world capable of determining antioxidant effectiveness. Valgimigli determined that the best pyridinols the Vanderbilt chemists had created are as much as 100 times more effective than vitamin E.

In December, Pratt received his doctorate and moved to the University of Illinois at Urbana-Champaign to begin a post doctoral fellowship. He is continuing to work with Porter's group on the new antioxidants.

By attaching a chemical group that makes pyridinols "greasy" – gives them a chemical affinity for fatty acids – the chemists have combined their antioxidants with low density lipoprotein (LDL or "bad" cholesterol) and found that they appear to protect LDL molecules from oxidation. That may be significant because one popular theory for the cause of coronary artery disease is lipid oxidation.

"When we try to force lipid oxidation, we find that the pyridinols are much more effective inhibitors than vitamin E," says Porter.

One of the chemists' next projects is to make pyridinols that look as much like Vitamin E as possible. The researchers have deliberately designed some pyridinols so that they can attach different types of chemical groups to the ring so they can make such modifications.

Another project is to make pyridinols that are water soluble, unlike vitamin E. Water soluble varieties should perform a role similar to that of vitamin C: trapping and destroying water-soluble "free radicals." Free radicals are electrically charged atoms or molecules produced by oxidation that are potentially harmful to the body.

In addition, the researchers have joined forces with three researchers at the Vanderbilt University Medical Center – Professor of Medicine Raymond F. Burk, Professor of Biochemistry Daniel C. Liebler and Professor of Pharmacology Jason D. Morrow – to collaborate on testing these new compounds in animals. They have submitted a proposal for federal funding that is currently under review.

###

The research was supported by the National Science Foundation, Vanderbilt University, the National Science and Engineering Research Council of Canada, the University of Bologna and the Italian Ministry of Research.

For more news about Vanderbilt research, visit Exploration, Vanderbilt's online research magazine at http://www.exploration.vanderbilt.edu.


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "New Antioxidants Are 100 Times More Effective Than Vitamin E." ScienceDaily. ScienceDaily, 2 February 2004. <www.sciencedaily.com/releases/2004/02/040202072148.htm>.
Vanderbilt University. (2004, February 2). New Antioxidants Are 100 Times More Effective Than Vitamin E. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2004/02/040202072148.htm
Vanderbilt University. "New Antioxidants Are 100 Times More Effective Than Vitamin E." ScienceDaily. www.sciencedaily.com/releases/2004/02/040202072148.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com
Flu Outbreak Closing Schools in Ohio

Flu Outbreak Closing Schools in Ohio

AP (Dec. 17, 2014) A wave of flu illnesses has forced some Ohio schools to shut down over the past week. State officials confirmed one pediatric flu-related death, a 15-year-old girl in southern Ohio. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins