Featured Research

from universities, journals, and other organizations

Jefferson Researchers Uncover Biochemical Clues To How Cells Migrate In Embryos

Date:
February 17, 2004
Source:
Thomas Jefferson University
Summary:
Researchers at Jefferson Medical College and Jefferson's Kimmel Cancer Center are gaining a better understanding of the cues that help guide cells to the right places in developing embryos.

Researchers at Jefferson Medical College and Jefferson's Kimmel Cancer Center are gaining a better understanding of the cues that help guide cells to the right places in developing embryos.

Steven Farber, Ph.D., assistant professor of microbiology and immunology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and his co-workers have found that statins, the group of anti-cholesterol drugs that includes the popular Lipitor, interfere with a biochemical pathway vital to the migration of germ cells in embryonic zebrafish. In all organisms, including humans, germ cells are stem cells that are destined to become either sperm or egg cells, and they must migrate from one place in the developing embryo to another before development can occur.

A better understanding of germ cell migration, Dr. Farber says, and cell migration in general, might lead to insights into disease processes, including cancer. Cancer turns deadly when it spreads to other areas in the body.

Dr. Farber and his co-workers report their findings in the February 2004 issue of the journal Developmental Cell.

"We have identified an enzyme in zebrafish – and there is a companion paper in the journal identifying the same pathway in fruit flies – showing that if you interfere with this enzyme, germ cells don't migrate correctly," he says. "It's likely a general feature of all vertebrates, and not simply a fish-specific observation."

In earlier work, Dr. Farber had studied the effects of statins on lipid metabolism in zebrafish embryos. Dr. Farber knew that researchers at New York University School of Medicine had found that a mutation in a gene for an enzyme, HMG-CoAReductase, disrupted germ cell migration in fruit flies. In both the fruit fly and all vertebrate embryos, germ cells need to migrate through the developing embryo to their final destination, where they develop into sperm or egg cells. HMG-CoAReductase also plays a central role in cholesterol synthesis in both humans and zebrafish.

Using a special technique developed by a colleague, they actually visualized the effect of Lipitor on germ cells, which, he says, caused the cells to "get lost." The cells were unable to migrate to the correct place in the developing embryo. Dr. Farber's group found that HMG-CoAReductase is important not just for fly germ cell migration, but also for a model vertebrate system such as the zebrafish. These data, he says, suggest that this pathway is "a highly conserved feature" of animal development.

The researchers found that they could block the effects of Lipitor if they injected the zebrafish beforehand with mevalonate, which is what HMGCoAReductase makes. They continued along the pathway, step by step, chemically knocking out enzymes and replacing them with their products to see if they could restore the normal pathway. They subsequently determined that blocking a particular enzyme, geranylgeranyl transferase I, which is further along the pathway from HMG-CoAReductase and responsible for transferring a lipid to a target protein – a process called prenylation – resulted in abnormal germ cell migration.

The work may have larger implications. "It's still preliminary, but we suspect that this pathway is a model for long-range migration of cells in general," he says. "We've identified a pathway, but not the particular protein that is modified. This is a protein that needs a lipid added in order to enable migrating cells to find their home." He and his team currently are trying to identify this mystery protein.

It is also possible that this pathway is important in cancer metastasis. "It's a commonly held view among scientists that many pathways common to cancer are in some regard a recapitulation of the pathways involved in early development," says Dr. Farber. "A cancer cell growing out of control needs to metastasize to other areas to set up shop. We suspect this pathway is what enables a cancer cell to find a good place to grow a tumor. Targeting this pathway might be a logical anti-cancer treatment."


Story Source:

The above story is based on materials provided by Thomas Jefferson University. Note: Materials may be edited for content and length.


Cite This Page:

Thomas Jefferson University. "Jefferson Researchers Uncover Biochemical Clues To How Cells Migrate In Embryos." ScienceDaily. ScienceDaily, 17 February 2004. <www.sciencedaily.com/releases/2004/02/040217072413.htm>.
Thomas Jefferson University. (2004, February 17). Jefferson Researchers Uncover Biochemical Clues To How Cells Migrate In Embryos. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2004/02/040217072413.htm
Thomas Jefferson University. "Jefferson Researchers Uncover Biochemical Clues To How Cells Migrate In Embryos." ScienceDaily. www.sciencedaily.com/releases/2004/02/040217072413.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins