Featured Research

from universities, journals, and other organizations

To Understand Butterfly Wing Colors, Biologists Develop First Transgenic Butterflies

Date:
March 8, 2004
Source:
University At Buffalo
Summary:
University at Buffalo biologists who study butterfly wing patterns have inserted into an African butterfly a marker gene from a jellyfish species, resulting in the first transgenic butterflies that express DNA from another species.

UB biologists have inserted into butterflies a marker gene from jellyfish that resulted in the insects' fluorescent green eyes, inset.
Credit: University At Buffalo

University at Buffalo biologists who study butterfly wing patterns have inserted into an African butterfly a marker gene from a jellyfish species, resulting in the first transgenic butterflies that express DNA from another species.

The research will allow the UB biologists to begin exploring how novel features, such as color patterns on butterfly wings, evolved from colorless, winged ancestors.

The research, with the butterfly Bicyclus anynana, is published in the current issue of Proceedings of the Royal Society: Biological Sciences.

"Ultimately, we want to understand how novelty arises in evolution," explained Antonia Monteiro, Ph.D., assistant professor of biological sciences in the UB College of Arts and Sciences and senior author on the paper.

The jellyfish gene, a common marker gene, was chosen for its ability to fluoresce, providing an easy method of tracking where it was being expressed.

The achievement of a transgenic butterfly marks a turning point in the study of these insects, Monteiro explained.

"The drive behind the study of butterflies mainly has been to understand the function of their beautiful and diverse color patterns in the context of the butterfly's ecology," she said.

"Our ultimate goal is to integrate our understanding of the developmental genetics of color pattern formation with the ecological and evolutionary processes in which these patterns play a role."

The UB research provides the first demonstration of germ line transformation in a butterfly, in which novel genes are injected into embryos and then are expressed in subsequent generations.

Seven individual transgenic butterflies were produced from the UB experiments. All of the butterflies expressed the jellyfish marker gene -- enhanced green fluorescent protein (EGFP) -- in their eyes.

"Since this genetic technique has been available for years in Drosophila, the fruit fly has become a model organism for studying gene function and regulation," Monteiro said. "But now that we can perform it in butterflies, we will, for the first time, be able to compare gene function and regulation across these two very different insect species."

In particular, she noted, the UB team wants to understand how genes that are common to fruit flies and butterflies evolve new functions, such as the specification of the novel color patterns on butterfly wings.

To find out, Monteiro and her colleagues need to understand not just the function of genes that have been mapped to the eyespot region, but whether or not new regulatory sequences evolved in order to activate them.

"By using transgenics, we can test whether genes that are expressed in novel locations in the butterfly wing really have a function," she said. "We also can discover the regulatory regions that cause these genes to be expressed in these novel locations."

She noted that such questions have become the recent focus of scientists like herself who study both evolutionary and developmental biology, popularly known in the field as "evo-devo," and who want to know how genes acquire new functions that result in the novel shapes, sizes and colors of specific organisms.

The research also is the first to successfully use transposons, or "jumping elements" to insert genes into butterflies, opening up new genetic techniques for exploring gene function in butterflies.

These mobile genetic elements, Monteiro explained, have recognition sequences for a "cut-and-paste" enzyme, also normally encoded inside the transposon, which helps them insert randomly into a host's genome.

Monteiro's co-authors on the paper are Jeffrey Marcus, Ph.D., former post-doctoral researcher in the UB Department of Biological Sciences, and Diane M. Ramos, a doctoral candidate in the department.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 27,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs.


Story Source:

The above story is based on materials provided by University At Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University At Buffalo. "To Understand Butterfly Wing Colors, Biologists Develop First Transgenic Butterflies." ScienceDaily. ScienceDaily, 8 March 2004. <www.sciencedaily.com/releases/2004/03/040308073128.htm>.
University At Buffalo. (2004, March 8). To Understand Butterfly Wing Colors, Biologists Develop First Transgenic Butterflies. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2004/03/040308073128.htm
University At Buffalo. "To Understand Butterfly Wing Colors, Biologists Develop First Transgenic Butterflies." ScienceDaily. www.sciencedaily.com/releases/2004/03/040308073128.htm (accessed October 1, 2014).

Share This



More Plants & Animals News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Earth Has Lost Half Its Vertebrate Wildlife Since 1970: WWF

Newsy (Sep. 30, 2014) A new study published by the World Wide Fund for Nature found that more than half of the world's wildlife population has declined since 1970. Video provided by Newsy
Powered by NewsLook.com
Dolphins Might Use Earth's Magnetic Field As A GPS

Dolphins Might Use Earth's Magnetic Field As A GPS

Newsy (Sep. 30, 2014) A study released Monday suggests dolphins might be able to sense the Earth's magnetic field and possibly use it as a means of navigation. Video provided by Newsy
Powered by NewsLook.com
How To Battle Stink Bug Season

How To Battle Stink Bug Season

Newsy (Sep. 30, 2014) Homeowners in 33 states grapple with stink bugs moving indoors at this time of year. Here are a few tips to avoid stink bug infestations. Video provided by Newsy
Powered by NewsLook.com
California University Designs Sustainable Winery

California University Designs Sustainable Winery

Reuters - US Online Video (Sep. 27, 2014) Amid California's worst drought in decades, scientists at UC Davis design a sustainable winery that includes a water recycling system. Vanessa Johnston reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins