Featured Research

from universities, journals, and other organizations

Scripps Scientists Look Deep Inside Sharks And Their High-performance Swimming System

Date:
May 6, 2004
Source:
Scripps Institution of Oceanography
Summary:
In the first exploration of muscle dynamics in live lamnid sharks (a group that includes the great white and mako), the researchers found that in fact tunas and lamnids share a surprisingly close array of swimming muscle dynamics.

Credit: Image courtesy Scripps Institution of Oceanography

Looks can be deceiving, the saying goes, and the same can be said of animals in the marine environment. To the casual observer, it would appear that the mighty great white shark and the common tuna don't have a lot in common. In fact, just the opposite is true, according to new research led by scientists at Scripps Institution of Oceanography at the University of California, San Diego, and their colleagues in Germany.

Related Articles


In the first exploration of muscle dynamics in live lamnid sharks (a group that includes the great white and mako), the researchers found that in fact tunas and lamnids share a surprisingly close array of swimming muscle dynamics.

Scientists who study large fish in the open ocean have long noted the similarities in species that exhibit high-performance swimming mechanics, particularly those built for fast and continuous motion. For example, such swimming is exhibited in lamnid sharks, which have long been suspected of sharing a basic locomotor design with tunas.

"Tunas and lamnid sharks have a body form that represents an extreme in biomechanical design for high-performance swimming," said Scripps's Jeanine Donley, the first author of the study appearing in the May 6 issue of the scientific journal Nature. In fact, the research study, she says, reveals an "unprecedented level" of similarity between the two, including the dynamics of steady swimming and functional design of their complex locomotor systems.

The researchers set out to investigate the evolutionary crossroads between lamnid sharks and tunas in regards to the mechanics and architecture of their muscle-tendon systems. Recent research has uncovered a muscle design in tunas that separate them from their related "bony" fishes (see http://scrippsnews.ucsd.edu/pressreleases/shadwick_tuna1.cfm). But similar investigations probing the biomechanical designs of lamnid sharks had not been successful, mainly due to the extreme difficulty in studying such large, elusive and dangerous predators.

"As apex predators in the ocean these sharks are important and becoming rare," said study coauthor Robert Shadwick, a professor in the Marine Biology Research Division at Scripps. "In this study we have found that lamnid sharks have diverged from their shark ancestors in the mechanical design of their swimming apparatus, just as tunas diverged from their bony fish ancestors in much the same way over the last 50 million years or so."

Donley and her colleagues used several research methods during the study. These included analyzing video recordings of mako sharks in a swim tunnel (see video). They also used a device called a sonomicrometer to precisely record muscle shortening and lengthening during swimming activity. And they used an array of computer-based techniques to explore the three-dimensional characteristics of shark tendons and how they connect to muscles.

The combined results, which remarkably matched similar studies in tunas, displayed a unique biomechanical design in which powerful red muscles in the front of lamnid sharks transfer energy to the tail region. This high-performance muscle system serves for powerful swimming propulsion, not unlike a natural, thrust-producing hydrofoil.

"It's interesting because the area of the body that is producing this motion is not the same area of the body that is moving back and forth--it's physically separated," said Donley. "It's exactly like tuna in that respect."

The authors say these characteristics distinguish lamnid sharks and tunas from virtually all other fish and arose independently in each, most likely the result of evolutionary selection for fast and continuous locomotion. Shadwick says in this respect lamnids and tunas are more like each other than they are to their closest relatives.

The authors believe the study shows that not only have the physical demands of the external environment sculpted the body shapes of these species, but also the internal physiology and "morphology," or form and structure, of their complex locomotor systems have been fine-tuned over the course of their evolution.

"Sharks and bony fishes have been separated for over 400 million years and yet we see one group of sharks and one group of bony fish that share a remarkable host of similarities in body form and function," said Donley. "It's interesting to understand how mechanical design principles influence the evolution of locomotion in these animals."

###

Coauthors of the research paper, in addition to Donley and Shadwick, include Chugey Sepulveda of Scripps Institution, and Peter Konstantinidis and Sven Gemballa of the University of Tόbingen in Germany.

Funding for the study was provided by the National Science Foundation and the University of California Regents.

Scripps Institution of Oceanography on the web: http://scripps.ucsd.edu

Scripps News on the web: http://scrippsnews.ucsd.edu

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. Now in its second century of discovery, the scientific scope of the institution has grown to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.


Story Source:

The above story is based on materials provided by Scripps Institution of Oceanography. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Institution of Oceanography. "Scripps Scientists Look Deep Inside Sharks And Their High-performance Swimming System." ScienceDaily. ScienceDaily, 6 May 2004. <www.sciencedaily.com/releases/2004/05/040506071505.htm>.
Scripps Institution of Oceanography. (2004, May 6). Scripps Scientists Look Deep Inside Sharks And Their High-performance Swimming System. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2004/05/040506071505.htm
Scripps Institution of Oceanography. "Scripps Scientists Look Deep Inside Sharks And Their High-performance Swimming System." ScienceDaily. www.sciencedaily.com/releases/2004/05/040506071505.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) — Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) — A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins