Featured Research

from universities, journals, and other organizations

New Study In Moths Shows Insects Not Entirely Ruled By Instinct

Date:
July 14, 2004
Source:
Ohio State University
Summary:
By examining the brain activity of moths, researchers have found that the behavior of these insects isn't ruled entirely by instinct. Rather, they can learn which odors mean food.

Credit: Image courtesy of Ohio State University

COLUMBUS, Ohio – By examining the brain activity of moths, researchers have found that the behavior of these insects isn't ruled entirely by instinct. Rather, they can learn which odors mean food.

Related Articles


The findings are more than academic: The researchers hope to develop methods for using trained moths to detect odors of interest for defense industry and law enforcement – such as odors given off by biological and chemical weapons.

Animal behaviorists have historically argued that most insects have a programmed response to a variety of situations, such as knowing which odors signal the presence of food and mates.

But scientists are discovering that animals don't always instinctively know what to do. In these cases, they have to learn, said Kevin Daly, the study's lead author and a research scientist in entomology at Ohio State University.

He and his colleagues used tiny electrodes implanted in the heads of sphinx moths to continuously monitor the insect's neuronal activity and feeding behavior before, during and after training the animal that one odor meant food – sugar water – was on the way and another odor did not.

"We saw a dramatic restructuring of the neural networks that convert scent into a code that the rest of the brain can understand," Daly said. "The changes in this coding suggest that the moths learned to differentiate between an odor that meant food and an odor that didn't."

Understanding how moths detect and discriminate between scents could have wide-reaching applications. In related work, Daly and his colleagues are training moths and bees to detect odors from manufactured explosives.

"In principle, if we can understand how insects learn and distinguish between odors, we could 'train' these animals to recognize any detectable odor of interest," he said.

The findings currently appear online in the Proceedings of the National Academy of Sciences.

The electrodes placed in the moths' brains registered the activity of neurons. Electrodes were also placed on feeding muscles to monitor the activity of the proboscis – a long tube that a moth uses for feeding – when the insects were exposed to different odors and to sugar. The researchers wanted to see how a moth's nervous system changed its response to an odor that was associated with food and how the moth responded behaviorally to that odor.

The moths were restrained in plastic tubes, leaving the antennae and proboscis accessible. Electrodes were inserted into each insect's head; Daly said that brain recordings could be made for up to 48 hours in these conditions. These moths normally live for a few days as adults.

The investigators put the bound moths through different odor conditioning trials: one created a clear relationship between an odor and food. In this case, the researchers wanted to see what happened in the brain and proboscis before, during and after the moths were exposed to the food-associated odor. In the second trial, moths were exposed to two odors, but only one predicted food. Both trials exposed moths to a series of 20 millisecond-long puffs of odor.

When odor predicted food, the researchers saw a significant and progressive increase – by about 60 percent – in the number of neurons responding to the odor. This increase in the neural network response indicated that the moths learned to associate the odor with food.

The researchers also saw striking differences in neuronal activity between the odor that predicted food and the odor that had nothing to do with food.

"More neurons were recruited into action when a moth smelled the odor connected to food," Daly said. "After a few exposures to this odor, moths automatically started sucking for the food, even when they weren't rewarded with food. They also learned to not respond to the odor that was unrelated to food.

"After learning, the way their nervous system responded to odor changed," he said.

Now that he and his colleagues have documented these nervous system changes, their next step is to take a deeper look into the neural networks and figure out what causes them to respond to changes.

"This study is a first pass at trying to understand how sensory neural networks code information, and how that coding process changes as an animal gains experience," Daly said.

"Ultimately, if we really want to understand how an animal changes its behavior, we have to go into the brain," he continued.

Daly conducted the research with Brian Smith, a professor of entomology at Ohio State, and in collaboration with Thomas Christensen, Hong Lei and John Hildebrand, all with the University of Arizona in Tucson.

The National Institutes of Health and the Defense Advanced Research Projects Agency funded this study.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "New Study In Moths Shows Insects Not Entirely Ruled By Instinct." ScienceDaily. ScienceDaily, 14 July 2004. <www.sciencedaily.com/releases/2004/07/040713080815.htm>.
Ohio State University. (2004, July 14). New Study In Moths Shows Insects Not Entirely Ruled By Instinct. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2004/07/040713080815.htm
Ohio State University. "New Study In Moths Shows Insects Not Entirely Ruled By Instinct." ScienceDaily. www.sciencedaily.com/releases/2004/07/040713080815.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins