Featured Research

from universities, journals, and other organizations

Scientists Discover New Approaches To Manipulating AIDS Virus

Date:
August 17, 2004
Source:
NIH/National Cancer Institute
Summary:
Researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, have discovered new information about how human immunodeficiency virus (HIV), the virus that causes acquired immune deficiency (AIDS), possibly evades eradication from the body.

Researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, have discovered new information about how human immunodeficiency virus (HIV), the virus that causes acquired immune deficiency (AIDS), possibly evades eradication from the body. In a study published in the August 16, 2004 Journal of Virology*, NCI HIV and AIDS Malignancy Branch scientists identified several possible gene targets and two drugs to flush out long-lasting HIV reservoirs that current treatments do not affect. They also established a connection between HIV and several other genes not previously associated with the virus and found new possible targets for blocking HIV replication.

Related Articles


Current AIDS drugs, called antiretrovirals, target HIV replication. However, these drugs cannot completely eradicate the virus from the body because HIV rests in some cells in a non-replicating stage called latent infection. The gene targets uncovered by the NCI researchers may be used to activate HIV within these cells, inducing its replication and thereby making the virus more vulnerable to treatment.

"The persistence of latent HIV reservoirs is one of the main barriers to the eradication of HIV infection," said principal investigator Steven Zeichner, M.D., PhD. "Our studies show that agents targeting specific genes can be used to force HIV out of latency. In a clinical setting, forcing HIV out of latency while maintaining good control of HIV replication using antiretroviral drugs may reduce or eliminate these reservoirs."

The researchers explored gene expression in latently-infected cells, and found that while these cells appear very similar to uninfected cells, they have a different pattern of gene expression. For example, genes whose products appear to create a favorable environment for viral replication — such as those inhibiting cell growth — were expressed at a lower level in latently-infected cells. Such differences in gene expression point to potential targets for therapy. Causing these genes to be expressed at a higher level could induce HIV replication, creating an opening for conventional therapies to operate.

Zeichner and his research fellow, Vyjayanthi Krishnan, Ph.D., had success doing just that with a compound called resveratrol. Resveratrol activates Egr1, a gene whose product causes cell growth to slow, creating favorable conditions for HIV replication. Zeichner believes resveratrol may mimic the effects of active HIV replication on the cell cycle. His lab is currently in the process of testing other agents to target genes involved in cells' transition out of latent infection.

Their success in stimulating replication in latently-infected cells "suggests that there may be additional new ways to manipulate HIV latency, and perhaps deplete latently infected reservoirs or even perhaps eliminate HIV infection," Zeichner said.

Zeichner's team also examined differences in gene expression between latently-infected cells and actively-infected cells, generating further possible therapeutic targets. They induced HIV replication in latently-infected cells and monitored their gene expression patterns over time. A total of 1740 genes out of 9127 studied showed statistically significant differences in expression throughout this period. Genes involved in the MAPK signaling pathway, which promotes viral replication, were expressed at a higher level; genes preventing transcription of DNA were expressed at a lower level.

Some of the genes that were expressed differently in infected cells are genes that have been linked to some cancers, suggesting that HIV requires some of the same functions that are implicated in the development of cancer. Many of these genes are already the subject of drug development efforts directed at cancer and other disorders.

While Krishnan, the first author on the study, cautions that their data are far from clinical application, she believes "the results may provide an early hint at strategies that drugs target cellular activity, rather than the virus itself." Unlike current AIDS drugs, such therapies "may be less likely to engender drug resistance by HIV."

For more information about cancer, visit the NCI Web site at http://www.cancer.gov or call NCI's Cancer Information Service at 1-800-4-CANCER (1-800-422-6237).


Story Source:

The above story is based on materials provided by NIH/National Cancer Institute. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Cancer Institute. "Scientists Discover New Approaches To Manipulating AIDS Virus." ScienceDaily. ScienceDaily, 17 August 2004. <www.sciencedaily.com/releases/2004/08/040817082326.htm>.
NIH/National Cancer Institute. (2004, August 17). Scientists Discover New Approaches To Manipulating AIDS Virus. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2004/08/040817082326.htm
NIH/National Cancer Institute. "Scientists Discover New Approaches To Manipulating AIDS Virus." ScienceDaily. www.sciencedaily.com/releases/2004/08/040817082326.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) — Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins