Featured Research

from universities, journals, and other organizations

The First Engineering Of Cell Surfaces In Living Animals

Date:
August 19, 2004
Source:
Lawrence Berkeley National Laboratory
Summary:
The ability to tag cell surfaces in living beings may someday allow the targeting of specific kinds of cells for noninvasive imaging, for developmental studies, and for treatment of disease.

A sugar on the surface of a mouse cell, right, modified with an azide group, and a probe comprised of a phosphine attached to a peptide (Flag), left, join in the Staudinger ligation. Fluorescence of a Flag antibody reveals the successful ligation. (Graphic courtesy of Lawrence Berkeley National Laboratory)

BERKELEY, CA – Four years ago Carolyn Bertozzi, a member of the Materials Sciences Division at the Department of Energy's Lawrence Berkeley National Laboratory and a professor of chemistry at the University of California at Berkeley, introduced a new way of engineering the surfaces of cells, by arming cell-surface sugars to take part in a modified chemical reaction known as the Staudinger ligation.

The technique allows a variety of markers to be attached to cultured cells without disturbing their biological environment; it has proved valuable in fundamental studies of cell interactions and in the development of new techniques for interfacing cells with synthetic materials and devices.

Now Bertozzi and her colleagues have demonstrated the Staudinger ligation in remodeled cells of living mice. The ability to tag cell surfaces in living beings may someday allow the targeting of specific kinds of cells for noninvasive imaging, for developmental studies, and for treatment of disease.

"There was no precedent for what we were trying to do, which was to modify the cells of a living animal so that they could undergo a chemical reaction without physiological harm," says Bertozzi. "It was a particular challenge because the living animal is such a complex reaction vessel." The researchers report their results in the 19 August 2004 issue of Nature.

Key to their success is what Bertozzi calls the bio-orthogonality of the reaction, literally "at right angles" to biology: chemical reactions artificially induced on the cell surface must be highly selective and able to take place in the warm, watery physiological environment, but at the same time they must have no harmful biological effects.

The Staudinger ligation meets these requirements. It is a reaction between a functional group called an azide (a class of compounds with three nitrogen atoms) and a phosphine (a molecule containing a phosphorus atom). Neither azides nor phosphines have harmful effects — indeed they are useful in some drugs: the A in AZT, azidothymidine, is for azide — but they rapidly react with each other under physiological conditions. Suitably modified by Bertozzi's methods, the ligation product formed from these compounds is stable under physiological conditions.

The trick is to get the azide half of the reaction to show up on cell surfaces. In cell cultures, this is done by diffusing into the cells a precursor, containing the azide group, of a commonly expressed form of oligosaccharide, or sugar, that includes sialic acid. The cells manufacture these azide-bearing sugars and display them on their surfaces.

With mice, Bertozzi's group injected the azide-containing precursor directly into the abdomen, where cells in the spleen and some other organs took it up. Later examination of spleen cells, which are rich in sialic-acid sugars, showed an abundance of cell-surface azides.

Because rodent blood has high levels of esterase, enzymes that might interfere with the conversion of the modified precursor, the first experiments were done with esterase-deficient knockout mice. Later the investigators found that wild-type mice displayed just as many cell-surface azides, so esterase was apparently no hindrance to the uptake of the azide-containing precursor.

The other half of the Staudinger ligation, the phosphine, may be attached to a great variety of markers. To confirm the success of the Staudinger ligation in mice, Bertozzi and her collaborators used a peptide that could be identified by a fluorescing antibody.

"The future holds a range of opportunities for using the Staudinger ligation for noninvasive imaging," says Bertozzi. "Phosphine markers might include radiochemicals for detection by positron emission tomography, or magnetically active molecules for detection by magnetic resonance imaging, or nanocrystals with unique optical properties, or many other methods. These markers could be injected into organs to seek out cells with certain glycosylation patterns" — patterns of cell-surface sugars characteristic of cancerous cells, for example, or sites of inflammation.

Not only does the demonstration of the Staudinger ligation in mice suggest a range of diagnostic and therapeutic possibilities, the Staudinger ligation itself may be only the first of what Bertozzi calls "a future arsenal of chemical reactions used to probe the biology of living animals."

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.


Story Source:

The above story is based on materials provided by Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "The First Engineering Of Cell Surfaces In Living Animals." ScienceDaily. ScienceDaily, 19 August 2004. <www.sciencedaily.com/releases/2004/08/040819083758.htm>.
Lawrence Berkeley National Laboratory. (2004, August 19). The First Engineering Of Cell Surfaces In Living Animals. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2004/08/040819083758.htm
Lawrence Berkeley National Laboratory. "The First Engineering Of Cell Surfaces In Living Animals." ScienceDaily. www.sciencedaily.com/releases/2004/08/040819083758.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins