Featured Research

from universities, journals, and other organizations

Researchers Develop Fast Track Way To Discover How Cells Are Regulated

Date:
September 21, 2004
Source:
University Of Utah Health Sciences Center
Summary:
Researchers at Huntsman Cancer Institute (HCI) at the University of Utah and a collaborator at the University of California at Santa Cruz report they have developed a unique computational approach to investigate a regulatory network for gene expression that is implicated in cell growth and development.

SALT LAKE CITY, Sept. 17, 2004 -- Researchers at Huntsman Cancer Institute (HCI) at the University of Utah and a collaborator at the University of California at Santa Cruz report they have developed a unique computational approach to investigate a regulatory network for gene expression that is implicated in cell growth and development. The study was published today in the journal Science.

Related Articles


"When studying the genome of any organism, be it yeast, worm, fly or human, scientists are faced with a problem -- the incredible number of genes," explains Susan Mango, Ph.D., an HCI investigator and leader of the research team. Mango's research centered on a common garden-variety nematode worm, C. elegans, which shares many genes in common with humans. She explains that although worms appear simple, the worm genome is comprised of 20,000 genes. The human genome has over 30,000 genes. "When you look at the numbers, it becomes very clear that the old way -- studying one gene at a time -- is too slow. It becomes a problem of scale, with high throughput the only answer."

Mango's team used a unique process that combines microarray technology with computational approaches to predict, based on probabilities, where in the genome a particular regulatory sequence might be found. With co-authors Wanyuan Ao, Ph.D.; Jeb Gaudet, Ph.D.; James Kent, Ph.D.; and Srikanth Mattumu, Mango searched C. elegans's genome to find certain "punctuation marks" in the code that might be regulatory sequences responsible for the growth and development of the worm's foregut, or pharynx. They were able to identify a total of seven candidate gene sequences; after testing, they discovered that of the seven, five proved to be bona fide regulatory sequences.

"Up to now, identifying transcription factor target genes has been a challenge to biologists. Using our unique algorithm, the Improbizer algorithm developed by James Kent, one of our collaborators, we were able to pick out regulatory sequences, very accurately and quickly," Mango says. "In addition, we also discovered a transcription factor known as DAF-12 that could bind to the regulatory sequence, and is absolutely necessary for the worm pharynx to respond to nutritional cues."

Mango's work in the future will focus on questions relating to regulatory mechanisms in cell metabolism and cell differentiation, both important avenues of cancer research.

Susan Mango, Ph.D., is an associate professor in the Department of Oncological Sciences at the University of Utah School of Medicine. The study was funded in part by a grant from the National Institutes of Health.

Huntsman Cancer Institute's mission is to understand cancer from its beginnings, to use that knowledge in the creation and improvement of cancer treatments, to relieve the suffering of cancer patients, and to provide education about cancer risk, prevention, and care.


Story Source:

The above story is based on materials provided by University Of Utah Health Sciences Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Utah Health Sciences Center. "Researchers Develop Fast Track Way To Discover How Cells Are Regulated." ScienceDaily. ScienceDaily, 21 September 2004. <www.sciencedaily.com/releases/2004/09/040920064049.htm>.
University Of Utah Health Sciences Center. (2004, September 21). Researchers Develop Fast Track Way To Discover How Cells Are Regulated. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/09/040920064049.htm
University Of Utah Health Sciences Center. "Researchers Develop Fast Track Way To Discover How Cells Are Regulated." ScienceDaily. www.sciencedaily.com/releases/2004/09/040920064049.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins