Featured Research

from universities, journals, and other organizations

Rutgers-led Research Offers New Clues In The Genetic Mysteries Of Maize

Date:
October 14, 2004
Source:
Rutgers, The State University Of New Jersey
Summary:
Rutgers researchers, with the support of the National Science Foundation, have pushed back the frontiers on the genetic nature and history one of the world's most important crops – corn.

NEW BRUNSWICK/PISCATAWAY, N.J. – Rutgers researchers, with the support of the National Science Foundation, have pushed back the frontiers on the genetic nature and history one of the world's most important crops – corn. This crop dominates agriculture in the United States, where approximately 9 billion bushels are produced annually at a value of $30 billion. Maize (or corn) is also an important dietary staple in much of the third world.

Rutgers' Joachim Messing and his colleagues announced this month discoveries about the inner workings of corn, its origins and evolution, with implications for breeding, genetic engineering and future genomic studies.

"This latest research, conducted with worldwide collaborations, led us to a new understanding of maize that will help enable scientists and farmers to make major improvements in one of the world's most significant crops and gain new and important insights in plant genomic studies," said Messing, director of the Waksman Institute of Microbiology at Rutgers, The State University of New Jersey. The findings are presented in three papers in the journal Genome Research and one in the Proceedings of the National Academy of Sciences.

The scientists conducted the most comprehensive survey of the maize genome ever performed and established for the first time the genome's magnitude – approximately 59,000 genes – and the relative position of the genes. This is twice as many as the human genome and the highest number of genes of any genome sequenced to date. Messing emphasized that this survey is only a first step and conducting a whole genome sequence is a priority dictated by nutritional, economic and societal needs.

The research further established that in addition to its immense size, the corn genome is extremely complex due, in part, to positional instability as well as its genetic history. Messing and his colleagues concluded that maize genes are scrambled, having moved around to different locations throughout the genome – an occurrence unheard of in other species, including the human genome. This has important implications for genetic engineering.

"An argument often cited against the introduction of external genes, a common practice in genetic engineering, suggests that it would create an unnatural instability in the genome," said Messing. "With all the maize genes moving around by themselves in nature, perhaps conveying some selective advantage in doing so, this argument is unfounded."

Through sophisticated computational analysis, the researchers concluded that today's corn is the product of two very closely related ancestral species that no longer exist. About 5 million years ago the species crossed and, in doing so, doubled the number of genes. Through mechanisms not yet revealed, many of these genes were shed and then others duplicated through gene amplification as this process is termed.

When compared to closely related species today, the researchers found that as much as 22 percent of the maize genes could be identified as being different. This was surprising, considering that other close relatives – such as chimpanzees and humans – differ in less than one percent of their genes.

"It looks like significant evolutionary change happened in a relatively short time," said Messing. "Because they are immobile, plants have to adapt to changes more rapidly than animals that can move to escape environmental impacts. Plants are continually faced with a variety of seasonal challenges and assaults by a series of different pests which may well lead to evolution on a fast track."

While the findings offered in the four newly published papers provide exciting, new glimpses into the nature of maize, Messing stressed the need for the completion of a whole genome sequence, a more detailed analysis of gene expression in maize, and a better understanding of its genetic and cellular mechanisms.


Story Source:

The above story is based on materials provided by Rutgers, The State University Of New Jersey. Note: Materials may be edited for content and length.


Cite This Page:

Rutgers, The State University Of New Jersey. "Rutgers-led Research Offers New Clues In The Genetic Mysteries Of Maize." ScienceDaily. ScienceDaily, 14 October 2004. <www.sciencedaily.com/releases/2004/10/041013085639.htm>.
Rutgers, The State University Of New Jersey. (2004, October 14). Rutgers-led Research Offers New Clues In The Genetic Mysteries Of Maize. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2004/10/041013085639.htm
Rutgers, The State University Of New Jersey. "Rutgers-led Research Offers New Clues In The Genetic Mysteries Of Maize." ScienceDaily. www.sciencedaily.com/releases/2004/10/041013085639.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins