Featured Research

from universities, journals, and other organizations

Innovative Robotic Microscopy Helps Gladstone Researchers Resolve Key Huntington's Disease Mystery

Date:
October 14, 2004
Source:
University Of California - San Francisco
Summary:
A mystery long associated with Huntington's disease has been resolved by a team of researchers at the UCSF-affiliated Gladstone Institute of Neurological Disease, thanks to a specially designed microscope that allows researchers to track changes in cells, including those associated with neurodegeneration, over long lengths of time.

A montage of four images of the development of a single neuron over a two-week period. The neuron was transfected with green fluorescent protein and an automated microscope was used to image the neuron 3 h after transfection (pseudocolored blue-green) and then to return to the same neuron periodically and re-image it 64 h (lavender-red), 113 h (orange-purple), and 137 h (purple-gold) later.
Credit: Photo Steven Finkbeiner, M.D., Ph.D, the Gladstone Institute of Neurological Disease and the University of California, San Francisco

A mystery long associated with Huntington's disease has been resolved by a team of researchers at the UCSF-affiliated Gladstone Institute of Neurological Disease, thanks to a specially designed microscope that allows researchers to track changes in cells, including those associated with neurodegeneration, over long lengths of time.

As reported in the cover story in the current issue of Nature (Oct. 14, 2004), the team determined that abnormal deposits of mutant huntingtin protein, which appear in the brains of all Huntington's disease patients, aren't the cause of neuronal death. Scientists know that mutant huntingtin protein is responsible for the disease, but they have not known in what form it wreaks its havoc. They haven't known, for instance, whether the abnormal deposits of the protein, known as "inclusion bodies," were, themselves, causative, protective or incidental to the disease. In the current study, the Gladstone team determined that inclusion bodies are a beneficial coping response, possibly sequestering mutant huntingtin protein, thereby reducing levels of the protein elsewhere in the neuron, and thus prolonging neurons' survival.

The finding suggests that mutant huntingtin protein inflicts its damage in some form other than as inclusion bodies, which are insoluble, or resistant to being dissolved in liquid. Investigators may now focus attention on the possibility that the real culprit is a more soluble form of mutant huntingtin spread throughout the neuron, or nerve cell, among other theories.

"We are very excited by these results," says lead investigator Steven Finkbeiner, MD, PhD, an assistant investigator at the Gladstone Institute of Neurological Disease and assistant professor of neurology and physiology at University of California, San Francisco (UCSF). "They will help us to better focus efforts to identify the mechanisms by which the huntingtin protein causes Huntington's and may add to the understanding of other neurodegenerative disorders."

Traditionally, scientists have tried to illuminate the role of the mutant protein within neurons by taking one-time snapshots of individual cells, a slow process that doesn't allow researchers to track changes in any given cell over time. Beyond slowness, a fundamental problem with this conventional approach is that the snapshots are not only taken at different times but also each image is of a completely different population of cells than the other. Scientists have tried to use these images to piece together theories of disease progression, but have had great difficulty interpreting their results because of the lack of continuity between images.

To address these issues, Finkbeiner developed an automated microscope that allows researchers to track changes in individual neurons over time, thus enabling them to identify factors that predict the fate of the cell.

"With this new technology, we can examine neurons well before they die, make measurements of whatever we wish, and then determine which factors have prognostic value, whether they predict survival or neurodegeneration, and how strong the prediction is. This is a powerful new way to guide our investigation into the underlying mechanisms of neurodegeneration," he explains.

In their study, the scientists introduced fluorescently tagged versions of huntingtin protein into neurons. They then used the robotic microscope to monitor the accumulation of the abnormal protein into inclusion bodies, as well as to monitor the levels of intracellular huntingtin protein, and the length of survival of thousands of individual cells over time. Sophisticated statistical techniques for survival analysis were then used to determine whether a particular abnormality predicted early death and might be pathogenic, or predicted longer survival and might be beneficial.

The findings suggest, says Finkbeiner, that inclusion bodies lock up mutant huntingtin in other parts of a cell and keep it from interfering with the rest of the neuron in ways that can trigger cell death. These findings provide evidence that inclusion bodies in Huntington's disease, and possibly other neurodegenerative diseases, help neurons cope with toxic proteins and prevent neurodegeneration.

The approach developed by the Finkbeiner group -- combining the use of a robotic microscope with powerful techniques of statistical analysis -- could also be used in studies of other neurodegenerative diseases characterized by the accumulation of cellular proteins, including Alzheimer's disease, prion diseases, amyotrophic lateral sclerosis (Lou Gehrig's disease), Parkinson's disease, and a group of nine so-called polyglutamine diseases of which Huntington's is the most widely known.

Moreover, the approach could be used to measure the nature and magnitude of the relationship between any two biological events within a cell that are separated by time. With this tool, researchers can begin to answer such fundamental questions as:

* Is there a relationship at all, or are the two events simply coincidental?

* If there is a relationship, is one event possibly the cause or the effect of the other?

* If it is a cause, is it a minor determinant or a major one?

These are questions that recur in all aspects of cell biology.

As Professor Harry T. Orr of the University of Minnesota explains in a companion Nature commentary, "In the long term, strength of this study lies in the approach itself. The capability to determine if a cellular feature of a disease is pathogenic, beneficial or merely incidental to a disease process will be of considerable advantage for understanding disease mechanisms. Will the results reported here end the debate on the pathogenic role of inclusion bodies in the polyglutamine diseases? If not, one wonders what would."

Huntington's disease is a hereditary, progressive neurodegenerative disorder characterized by the development of emotional, behavioral, and psychiatric abnormalities, loss of intellectual and cognitive functioning, and motor disturbances. Although symptoms typically become evident during the fourth or fifth decades of life, the age at onset is variable and ranges from early childhood to the 70s or 80s. It's named for the American physician who initially described the condition in 1872.

The paper, "Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death," was co-authored by Finkbeiner and fellow GIND staff members Montserrat Arrasate and Siddhartha Mitra; Erik S. Schweitzer of the Brain Research Institute, UCLA; and Mark R. Segal of the Division of Biostatistics, UCSF. Primary support for this work was provided by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health (NIH). Additional support was provided by the National Institute of Aging within the NIH, and the J. David Gladstone Institutes.

###

The Gladstone Institute of Neurological Disease is one of three research institutes of The J. David Gladstone Institutes, a private, nonprofit biomedical research institution affiliated with UCSF. For further information, visit http://www.gladstone.ucsf.edu/gind.


Story Source:

The above story is based on materials provided by University Of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Francisco. "Innovative Robotic Microscopy Helps Gladstone Researchers Resolve Key Huntington's Disease Mystery." ScienceDaily. ScienceDaily, 14 October 2004. <www.sciencedaily.com/releases/2004/10/041014075904.htm>.
University Of California - San Francisco. (2004, October 14). Innovative Robotic Microscopy Helps Gladstone Researchers Resolve Key Huntington's Disease Mystery. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2004/10/041014075904.htm
University Of California - San Francisco. "Innovative Robotic Microscopy Helps Gladstone Researchers Resolve Key Huntington's Disease Mystery." ScienceDaily. www.sciencedaily.com/releases/2004/10/041014075904.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins