Featured Research

from universities, journals, and other organizations

Molecular Technique Shows Promise In Destroying Drug Resistance In Bacteria

Date:
November 16, 2004
Source:
University Of Illinois At Urbana-Champaign
Summary:
A new approach to outwit resistance to antibiotics has been discovered by a team of researchers at the University of Illinois at Urbana-Champaign. By inserting a naturally occurring molecule into an antibiotic-resistant bacterium, the team was able to gradually destroy the machinery responsible for the resistance.

Chemistry professor Paul Hergenrother, second from right, and graduate students, from left, Jason R. Thomas, Johna C.B. DeNap and Dinty J. Musk have discovered a new approach to outwit resistance to antibiotics.
Credit: Photo by Kwame Ross

CHAMPAIGN, Ill. — A new approach to outwit resistance to antibiotics has been discovered by a team of researchers at the University of Illinois at Urbana-Champaign.

Related Articles


By inserting a naturally occurring molecule into an antibiotic-resistant bacterium, the team was able to gradually destroy the machinery responsible for the resistance.

“Multidrug-resistant bacteria are now ubiquitous in both hospital settings and the larger community,” wrote Paul J. Hergenrother, a professor of chemistry, in a paper that appeared online ahead of publication in the Journal of the American Chemical Society. “Clearly, new strategies and targets are needed to combat drug-resistant bacteria.”

Antibiotic resistance makes it difficult to fight infection and increases the chance of acquiring one while in a hospital. That, in turn, has led to more deaths from infection, longer hospital stays and a greater use of more toxic and expensive drugs, according to the National Institutes of Health.

Resistance occurs when bacteria develop ways to make themselves impervious, such as by pumping antibiotics out of the cell, preventing them from entering the cell or demolishing them. A common way bacteria develop resistance is by laterally transferring plasmids – pieces of extra-chromosomal DNA – from one bacterium to another. These plasmids contain genetic codes for proteins that make bacteria insensitive to antibiotics.

“Our idea was that if you could eliminate plasmids that make the bacterium resistant, then the bacterium could be sensitive to antibiotics again,” Hergenrother said.

The researchers’ approach was to use a natural process called plasmid incompatibility. “If there is one plasmid in a cell and another one is introduced, then they compete with each other for resources,” Hergenrother said. “One of them wins and the other is eliminated.”

With the help of chemistry graduate students Johna C.B. DeNap, Jason R. Thomas and Dinty J. Musk, Hergenrother developed a technique that mimicked plasmid incompatibility by incubating bacteria containing plasmids with a specific compound – in this case an aminoglycoside called apramycin that binds to plasmid-encoded RNA and prevents proper plasmid reproduction.

Apramycin was chosen after numerous potential aminoglycosides – a group of antibiotics effective against gram-negative bacteria – were tested to find those that bind tightly to the target plasmids. Positively charged apramycin bound to negatively charged plasmid-encoded RNA, which allowed apramycin to prevent the actions of the protein that triggers plasmid reproduction. By thwarting that protein, apramycin blocked plasmid replication.

The apramycin treatment was applied to bacterial cultures that were grown for 250 generations. By the end of the experiment, the plasmids no longer were present, making it possible for antibiotics to work.

“This is the first demonstration of a mechanistic-based approach to systematically eliminate the plasmids,” Hergenrother said. “Standard antibiotics target the cell wall, but as resistance to antibiotics emerges, there needs to be other targets. We validated that plasmids as a new target for antibiotics.”

Further studies are needed to identify whether apramycin is useful against the plasmids occurring in different strains of antibiotic-resistant bacteria. It is possible that other compounds may be needed to target specific plasmids, Hergenrother said. Future studies in his lab will investigate those questions.

The Office of Naval Research, the National Institutes of Health and the Research Corporation, a private Arizona-based foundation that supports basic research in the physical sciences, funded the work.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Molecular Technique Shows Promise In Destroying Drug Resistance In Bacteria." ScienceDaily. ScienceDaily, 16 November 2004. <www.sciencedaily.com/releases/2004/11/041115002124.htm>.
University Of Illinois At Urbana-Champaign. (2004, November 16). Molecular Technique Shows Promise In Destroying Drug Resistance In Bacteria. ScienceDaily. Retrieved February 28, 2015 from www.sciencedaily.com/releases/2004/11/041115002124.htm
University Of Illinois At Urbana-Champaign. "Molecular Technique Shows Promise In Destroying Drug Resistance In Bacteria." ScienceDaily. www.sciencedaily.com/releases/2004/11/041115002124.htm (accessed February 28, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, February 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Whale-Watching Scientists Spot Baby Orca

Whale-Watching Scientists Spot Baby Orca

AP (Feb. 28, 2015) Researchers following endangered killer whales spotted a baby orca off the coast of Washington state, the third birth documented this winter but still leaving the population dangerously low. (Feb. 28) Video provided by AP
Powered by NewsLook.com
The Best Drinks for Your Health

The Best Drinks for Your Health

Buzz60 (Feb. 27, 2015) When it comes to health and fitness, there&apos;s lots of talk about what foods to eat, but there are a few liquids that can promote good nutrition. Krystin Goodwin (@krystingoodwin) has the healthiest drinks to boost your health! Video provided by Buzz60
Powered by NewsLook.com
Cherries, Snap Peas and More Tasty Spring Produce

Cherries, Snap Peas and More Tasty Spring Produce

Buzz60 (Feb. 27, 2015) From sweet cherries to sugar snap peas, spring is the peak season for some of the tastiest and healthiest produce. Krystin Goodwin (@Krystingoodwin) has the best seasonal fruits and veggies to spring in to good health! Video provided by Buzz60
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins