Featured Research

from universities, journals, and other organizations

Replicating An Eel's Nerve Circuitry May Aid Paralyzed People

Date:
December 6, 2004
Source:
Johns Hopkins University
Summary:
In a collaboration that blends biology and robotics, researchers at Johns Hopkins and the University of Maryland are unraveling the circuitry in an eel's spinal cord to help develop a microchip implant that may someday help paralyzed people walk again.

Researchers at Johns Hopkins are devising microchips to guide robotic legs as a first step in efforts to make a implant that could someday help paralyzed people walk again.
Credit: Photo by Will Kirk / Courtesy of Johns Hopkins University

In a collaboration that blends biology and robotics, researchers at Johns Hopkins and the University of Maryland are unraveling the circuitry in an eel's spinal cord to help develop a microchip implant that may someday help paralyzed people walk again.

After a spinal cord injury, many patients are unable to move because the brain is cut off from nerve control centers called central pattern generators, which are believed to be located in the lower back. The two-school research team's goal is to make a device that could mimic the signals sent by the brain and coax these nerve centers into sending "walking" instructions to muscles in a patient's legs.

"This is a challenging, long-term project, but we believe it has a good chance to succeed," said Ralph Etienne-Cummings, an electronics and robotics expert who is lead researcher on the project at Johns Hopkins. "Our first step is to learn how the brain transmits electrical messages along the spinal cord that tell the legs what to do. Then, we want to make microchips that replicate this process. We've started by modeling the way swimming signals move along the spinal cord of a lamprey eel."

Etienne-Cummings, an associate professor in the Department of Electrical and Computer Engineering at Johns Hopkins, specializes in designing robotic devices that operate in ways that resemble those found in biological organisms. In the spinal cord project, he is working with Avis H. Cohen, who has spent many years studying the lamprey's nervous system and how it directs swimming. Cohen is a professor in the Department of Biology, Neuroscience and Cognitive Science at the University of Maryland, College Park.

"Even though the lamprey is a very primitive vertebrate, we and others have shown that it's remarkably like humans in the ways it makes and controls its locomotion," Cohen said. "But unlike that of humans, the lamprey's nervous system is remarkably easy to study."

The recent death of actor and research advocate Christopher Reeve has increased the public's awareness of efforts to help people with spinal cord injuries. The team led by Etienne-Cummings and Cohen has already published a paper describing the use of a microchip version of a biological central pattern generator to produce a lifelike gait in a robotic leg. In this project, funded by the U.S. Office of Naval Research, the university researchers collaborated with M. Anthony Lewis of Iguana Robotics, Inc.

The researchers are now moving to expand their project by developing a neuroprosthetic implant that would connect to human central pattern generators to restore locomotion in patients with spinal cord injuries.

The lamprey is an ideal starting point, Etienne- Cummings said, because the eel's spinal cord can be removed and kept alive in a lab solution. By adding chemicals, the eel's excised spinal column can be stimulated to produce the pattern of nerve signals seen when a live eel is swimming. "My collaboration with Prof. Cohen began when we tried to model the lamprey's spinal cord circuits on a silicon microchip," Etienne-Cummings said. "That provided us with a more natural way to control robotic limbs. But it also showed us a possible way to interface electronically with human biology."

To restore movement in patients with spinal cord injuries, other researchers are trying to regrow severed nerves or directly stimulate the muscles in paralyzed limbs. Etienne-Cummings and Cohen are pursuing a different but possibly complementary approach. They believe that even when the central pattern generators that guide movement from the lower back are cut off from the brain, they remain viable.

A properly designed implant, they believe, could act in place of the brain and direct these dormant control centers to send the same kind of locomotion signals they did before the spinal cord was injured. "We want to take advantage of circuits that already exist in the body," Etienne-Cummings said. "Instead of stimulating the leg muscles directly, we want to go to the spinal cord and stimulate the nerves that control the muscles in the legs."

He envisions the device that would accomplish this as one that would contain mixed-signal (analog and digital) very large-scale integrated microchips. The device would be small and relatively inexpensive, running on a low- power, rechargeable battery.

Etienne-Cummings cautioned, however, that much work lies ahead. After the researchers conclude their studies on lampreys, they must determine whether the results can be transferred to small mammals, such as rats. Routine use in humans could be at least 10 years away.

The continuing research has been supported by funding from the Office of Naval Research, the National Science Foundation and the National Institutes of Health.


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Replicating An Eel's Nerve Circuitry May Aid Paralyzed People." ScienceDaily. ScienceDaily, 6 December 2004. <www.sciencedaily.com/releases/2004/12/041203084855.htm>.
Johns Hopkins University. (2004, December 6). Replicating An Eel's Nerve Circuitry May Aid Paralyzed People. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2004/12/041203084855.htm
Johns Hopkins University. "Replicating An Eel's Nerve Circuitry May Aid Paralyzed People." ScienceDaily. www.sciencedaily.com/releases/2004/12/041203084855.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins