Featured Research

from universities, journals, and other organizations

Researchers Improve Predictions Of Cloud Formation For Better Global Climate Modeling

Date:
December 15, 2004
Source:
National Science Foundation
Summary:
Atmospheric scientists have developed simple, physics-based equations that address some of the limitations of current methods for representing cloud formation in global climate models – important because of increased aerosol pollution that gives clouds more cooling power and affects precipitation.

A new type of cloud condensation nuclei (CCN) counter was developed by Georgia Tech Assistant Professor Athanasios Nenes and Gregory Roberts at the Scripps Institution of Oceanography. The instrument measures how many cloud droplets form and how long they take to form.
Credit: Image Courtesy of Athanasios Nenes

Arlington, Va. -- Atmospheric scientists have developed simple, physics-based equations that address some of the limitations of current methods for representing cloud formation in global climate models – important because of increased aerosol pollution that gives clouds more cooling power and affects precipitation.

The National Science Foundation (NSF)-funded researchers, led by scientists at the Georgia Institute of Technology, also have developed a new instrument for measuring the conditions and time needed for a particle to become a cloud droplet. This will help scientists determine how various types of emissions affect cloud formation.

Georgia Tech scientist Athanasios Nenes will present a lecture on the work at the American Geophysical Union’s fall meeting in San Francisco on Dec. 17. The session is titled “Tropospheric Aerosol Processes: The Physical and Chemical Aging of Aerosol Particles and Their Impacts.”

Clouds play a critical role in climate, Nenes explained. Low, thick clouds cool the earth by reflecting solar radiation whereas high, thin clouds have warming properties by trapping infrared radiation emitted by the earth.

Scientists have learned that human activities influence cloud formation. Airborne particles released by smokestacks, charcoal grills and car exhaust restrict the growth of cloud droplets, causing condensing water to spread out among a larger number of smaller droplets. Known as the “indirect aerosol effect,” it gives clouds more surface area and reflectivity, which translates into greater cooling power. The clouds may also have less chance of forming rain, which allows cloud to remain longer for cooling.

“Of all the components of climate change, the aerosol indirect effect has the greatest potential cooling effect, yet quantitative estimates are highly uncertain,” said Nenes. “We need to get more rigorous and accurate representation of how particles modify cloud properties. Until the aerosol indirect effect is well understood, society is incapable of assessing its impact on future climate.”

Current computer climate models can’t accurately predict cloud formation, which, in turn, hinders their ability to forecast climate change from human activities. “Because of their coarse resolution, computer models produce values on large spatial scales (hundreds of kilometers) and can only represent large cloud systems,” Nenes said.

Aerosol particles, however, are extremely small and measured in micrometers. This means predictive models must address processes taking place on a very broad range of scale. “Equations that describe cloud formation simply cannot be implemented in climate models,” Nenes said. “We don’t have enough computing power -- and probably won’t for another 50 years. Yet somehow we still need to describe cloud formation accurately if we want to understand how humans are affecting climate.”

To address the lack of computer power and shortcomings of existing parameterization, Nenes and his research team have developed simple, physics-based equations that link aerosol particles and cloud droplets. Then these equations can be scaled up to a global level, providing accurate predictions thousands of times faster than more detailed models.

This modeling method has proven successful in two field tests. Data was collected from aircraft flying through from cumulus clouds off the coast of Key West, Fla., in 2002, and from stratocumulus clouds near Monterey, Calif., in 2003. Compared with this real-world data, predictions from Nenes’ model were accurate within 10 to 20 percent.

“We never expected to capture the physics to that degree,” Nenes explained. “We were hoping for a 50 percent accuracy rate.”

Another challenge in predicting climate change is to understand how aerosols’ chemistry affects cloud formation. Each particle has a different potential for forming a cloud droplet, which depends on its composition, location and how long it has been in the atmosphere. Until now, people have measured and averaged properties over long periods of time. “Yet particles are mixing and changing quickly,” Nenes said. “If you don’t factor in the chemical aging of the aerosol, you can easily have a large error when predicting cloud droplet number.”

Working with Gregory Roberts at the Scripps Institution of Oceanography, Nenes developed a new type of cloud condensation nuclei (CCN) counter. This instrument exposes different aerosol particles to supersaturation, which enables researchers to determine: 1) how many droplets form and 2) how long they take to form.

Providing fast, reliable measurements, the CCN counter can be used on the ground or in an aircraft. “It gives us a much needed link for determining how different types of emissions will affect clouds formation,” Nenes explained.

Nenes and Roberts have patented the CCN instrument, and a paper describing the technology will be published in an upcoming issue of the journal Aerosol Science and Technology.

The new modeling method and CCN instrument have far-reaching applications for predicting climate change and precipitation patterns, the scientists believe.

The indirect aerosol effect is counteracting greenhouse warming now, but will stop at some point, Nenes explained. “One of our goals is to figure out how long we’ll have this cooling effect so we can respond to changes.”


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Researchers Improve Predictions Of Cloud Formation For Better Global Climate Modeling." ScienceDaily. ScienceDaily, 15 December 2004. <www.sciencedaily.com/releases/2004/12/041214082116.htm>.
National Science Foundation. (2004, December 15). Researchers Improve Predictions Of Cloud Formation For Better Global Climate Modeling. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2004/12/041214082116.htm
National Science Foundation. "Researchers Improve Predictions Of Cloud Formation For Better Global Climate Modeling." ScienceDaily. www.sciencedaily.com/releases/2004/12/041214082116.htm (accessed July 31, 2014).

Share This




More Earth & Climate News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Visitors Feel Part of the Pack at Wolf Preserve

Visitors Feel Part of the Pack at Wolf Preserve

AP (July 31, 2014) Seacrest Wolf Preserve on the northern Florida panhandle allows more than 10,000 visitors each year to get up close and personal with Arctic and British Columbian Wolves. (July 31) Video provided by AP
Powered by NewsLook.com
Florida Panther Rebound Upsets Ranchers

Florida Panther Rebound Upsets Ranchers

AP (July 31, 2014) With Florida's panther population rebounding, some ranchers complain the protected predators are once again killing their calves. (July 31) Video provided by AP
Powered by NewsLook.com
Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins