Featured Research

from universities, journals, and other organizations

A Deep Sea Hydrocarbon Factory

Date:
December 22, 2004
Source:
University Of Minnesota
Summary:
A team of University of Minnesota scientists has discovered how iron- and chromium-rich rocks can generate natural gas (methane) and related hydrocarbons when reacted with superheated fluids circulating deep beneath the floor of the Atlantic Ocean.

MINNEAPOLIS / ST. PAUL (12/10/2004) -- A team of University of Minnesota scientists has discovered how iron- and chromium-rich rocks can generate natural gas (methane) and related hydrocarbons when reacted with superheated fluids circulating deep beneath the floor of the Atlantic Ocean. Because the process is completely nonbiological, the hydrocarbons could have been a source of “food” for some of the first organisms to inhabit the Earth. Also, methane is a potent greenhouse gas, and this process may have contributed to global warming early in geologic time, the researchers said. The researchers—Dionysios Foustoukos and Fu Qi and their graduate adviser, professor W.E. Seyfried, Jr.—will present a portion of this work Monday, Dec. 13, at the American Geophysical Union meeting in the Moscone Convention Center, San Francisco.

The most familiar sources of methane are bacteria that live in bogs, lakes and the stomachs of ruminants like cows. But before any life existed, there must have been an energy source that could be tapped by primitive life forms. The simplest sources are hydrogen-rich compounds like hydrogen gas, hydrogen sulfide gas and hydrocarbons.

In the laboratory, the researchers recreated the intense heat (more than 700 degrees F) and pressure (400 times air pressure at sea level) that exist on the ocean bottom in parts of the Mid-Atlantic Ridge (MAR). The MAR, which runs in a jagged north-south line beneath the Atlantic Ocean, is a site where upwelling magma is slowly pushing huge slabs of crust apart, exposing portions of the Earth’s upper mantle. It contains structures called hydrothermal (hot water) vents, which spew superheated fluids into the seawater. The team found that under such conditions, hydrocarbons—methane, ethane and propane—could be produced on the surface of minerals rich in iron and chromium.These hydrocarbons may help account for the diverse communities of life that typically thrive around hydrothermal vents.

The process of hydrocarbon production occurs in two steps. In the first, an iron compound in rock strips water of its oxygen, liberating hydrogen gas. In the second step, hydrogen gas and carbon dioxide (from the degassing of magma) combine to produce methane and water. The Minnesota team discovered that rocks rich in chromium minerals accelerate the second step, while also producing more complex hydrocarbons—ethane and propane. Both likely serve as food for some bacteria.

“The second step is a reaction well known to chemists,” said Seyfried, a professor of geology and geophysics. “But in several papers published in the last few years, researchers have noted great difficulty in forming hydrocarbons more complex than methane. Dionysios [Foustoukas] showed that in the presence of chromium-bearing minerals, it could happen.

“Chemists might want to tweak this process and see if they can produce hydrocarbons more efficienty. But we want to get clues about what goes on in hydrothermal vents and to understand how hydrocarbon gases are generated in the continental and oceanic crust.”

In related work, Seyfried and and his colleague Kang Ding have built chemical sensors that can be placed in hydrothermal vents to measure such items as acidity and the amounts of gases like hydrogen and hydrogen sulfide, which also serve as energy sources for microbial communities. Acidity also seems to play a role in hydrocarbon synthesis in submarine hydrothermal systems. To access the vents as deep as two miles beneath the sea surface, the researchers use the submersible ALVIN; they have now dived to a number of vent sites.

The work was supported by the National Science Foundation and the Petroleum Research Fund.


Story Source:

The above story is based on materials provided by University Of Minnesota. Note: Materials may be edited for content and length.


Cite This Page:

University Of Minnesota. "A Deep Sea Hydrocarbon Factory." ScienceDaily. ScienceDaily, 22 December 2004. <www.sciencedaily.com/releases/2004/12/041219133659.htm>.
University Of Minnesota. (2004, December 22). A Deep Sea Hydrocarbon Factory. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2004/12/041219133659.htm
University Of Minnesota. "A Deep Sea Hydrocarbon Factory." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219133659.htm (accessed October 21, 2014).

Share This



More Earth & Climate News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
White Rhino's Death In Kenya Means Just 6 Are Left

White Rhino's Death In Kenya Means Just 6 Are Left

Newsy (Oct. 20, 2014) Suni, a rare northern white rhino at Ol Pejeta Conservancy, died Friday. This, as many media have pointed out, leaves people fearing extinction. Video provided by Newsy
Powered by NewsLook.com
New Organic Fertilizer Helps Reforestation of Monarch Butterflies’ Winter Retreat

New Organic Fertilizer Helps Reforestation of Monarch Butterflies’ Winter Retreat

Reuters - Innovations Video Online (Oct. 20, 2014) Using an organic fertiliser, a conservationist from the National Autonomous University of Mexico (UNAM), leads an award-winning project to reforest the sanctuary of monarch butterflies. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins