Featured Research

from universities, journals, and other organizations

$43 Million Grant From Gates Foundation Brings Together Unique Collaboration For Antimalarial Drug

Date:
December 30, 2004
Source:
University Of California, Berkeley
Summary:
A $42.6 million grant from the Bill & Melinda Gates Foundation to the Institute for OneWorld Health, the first nonprofit pharmaceutical company in the United States, will create a powerful new approach to developing a more affordable, accessible cure for malaria, which kills more than a million children each year.

Graduate student Doug Pitera (left) and Jay Keasling inspect a sweet wormwood plant growing in their lab. They hope to extract from wormwood the genes involved in the synthesis of artemisinin, then insert these genes into laboratory microbes to build bacterial factories for the drug. (Peg Skorpinski photo)

BERKELEY – A $42.6 million grant from the Bill & Melinda Gates Foundation to the Institute for OneWorld Health, the first nonprofit pharmaceutical company in the United States, will create a powerful new approach to developing a more affordable, accessible cure for malaria, which kills more than a million children each year.

Related Articles


OneWorld Health, which announced the grant today (Monday, Dec. 13), will work in partnership with the University of California, Berkeley, and Amyris Biotechnologies. UC Berkeley will conduct research to perfect a microbial factory for the compound artemisinin, currently the most effective treatment for malaria, and Amyris, a new biotech company founded on the breakthroughs in synthetic biology pioneered at UC Berkeley, will develop the process for industrial fermentation and commercialization. OneWorld Health will perform the drug development and regulatory work to demonstrate the bioequivalence of microbially-produced artemisinin derivative to the drug's natural form.

Malaria has become increasingly resistant to front-line medications, but combination drugs containing artemisinin show nearly 100 percent effectiveness after a short three-day regimen. Yet, at a price of $2.40 per adult course for artemisinin combination therapies provided through the World Health Organization, these drugs are still beyond the reach of millions of the world's poorest people. Artemisinin is in short supply, and producing it currently is labor-intensive and relatively expensive.

The partnership will utilize a high-technology solution to bring down the cost of treatment to well under a dollar, a price more affordable for patients in developing countries.

"This is an extraordinary partnership between public and private institutions that combines cutting-edge science with a commitment to affordability and accessibility for those people in need," said Regina Rabinovich, M.D., M.P.H., director of infectious diseases at the Bill & Melinda Gates Foundation. "I hope that UC Berkeley's participation will serve as a model for other academic institutions to apply their scientific knowledge and resources to critical global health problems."

Each year, between 300 and 500 million people, most of them poor, become infected with malaria, and at least 1.5 million die, primarily children in Africa and Asia.

"With UC Berkeley's innovative technology, Amyris' advancement of this new process, and our drug development and regulatory expertise, we'll provide a new, scalable and stable supply of affordable antimalarials for the developing world," said Victoria Hale, Ph.D., founder and CEO of OneWorld Health.

To ensure affordability, UC Berkeley has issued a royalty-free license to both OneWorld Health and Amyris, of Albany, Calif., to develop the technology for malaria treatments. In exchange, Amyris will produce the drugs at cost, and OneWorld Health will perform the detailed non-clinical regulatory work that will be required by United States and other global agencies to allow the low-cost, microbially-based product to be substituted for plant-based product by manufacturers of combination drugs containing artemisinin.

The nonprofit nature of this partnership could be a model for attacking neglected diseases in the developing world, said Jay Keasling, Ph.D., professor of chemical engineering at UC Berkeley, who created the genetically engineered microbial drug factories. Keasling also is director of the synthetic biology department at Lawrence Berkeley National Laboratory and a California Institute for Quantitative Biomedical Research (QB3) faculty affiliate.

"This project will use some of the latest advances in molecular biology to engineer a microbial chemical factory and reduce the cost of a much-needed drug tenfold," he said. "In many ways, this project is a dream project: interesting science, high technology, rapid transition from the bench to the bedside, and most important, critical need."

To produce the artemisinin, Keasling and his team have genetically modified microbes. This approach, one of the first triumphs of a field called synthetic biology, also produces a reliably pure compound. While synthetic biology can be used to create any number of useful chemicals called isoprenoids that form the basis for products such as perfumes and flavorings, Keasling has chosen to focus on the creation of much-needed pharmaceuticals, such as artemisinin, for the developing world.

Extraction of artemisinin from the wormwood plant is labor intensive and, in some developing countries, it is produced by a diesel fuel purification process that may retain toxic impurities in the final drug product. UC Berkeley will complete development of the synthetic process and maximize production of artemisinic acid, a precursor to artemisinin. The breakthrough technology that makes all this possible was developed by Keasling and his UC Berkeley team over the past 10 years.

Amyris will develop processes to produce large quantities of microbial artemisinic acid and chemically convert it to artemisinin and other effective medicines. These new processes can be easily scaled to meet the enormous demand for low-cost pharmaceuticals in developing countries.

"We're focusing our groundbreaking technology on producing a known pharmaceutical — the most effective antimalarial out there — so that it reaches the people who need it most. This is just the beginning of drug production using synthetic biology," said Jack D. Newman, Ph.D., a founding scientist at Amyris.


Story Source:

The above story is based on materials provided by University Of California, Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University Of California, Berkeley. "$43 Million Grant From Gates Foundation Brings Together Unique Collaboration For Antimalarial Drug." ScienceDaily. ScienceDaily, 30 December 2004. <www.sciencedaily.com/releases/2004/12/041219151820.htm>.
University Of California, Berkeley. (2004, December 30). $43 Million Grant From Gates Foundation Brings Together Unique Collaboration For Antimalarial Drug. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2004/12/041219151820.htm
University Of California, Berkeley. "$43 Million Grant From Gates Foundation Brings Together Unique Collaboration For Antimalarial Drug." ScienceDaily. www.sciencedaily.com/releases/2004/12/041219151820.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins