Featured Research

from universities, journals, and other organizations

Antibiotic Resistant Bacterium Uses Sonar-like Strategy To 'See' Enemies Or Prey

Date:
January 14, 2005
Source:
Schepens Eye Research Institute
Summary:
For the first time, scientists have found that bacteria can use a Sonar-like system to spot other cells (either normal body cells or other bacteria) and target them for destruction. Reported in the December 24 issue of Science, this finding explains how some bacteria know when to produce a toxin that makes infection more severe. It may lead to the design of new toxin inhibitors.

Boston, MA -- For the first time, scientists have found that bacteria can use a Sonar-like system to spot other cells (either normal body cells or other bacteria) and target them for destruction. Reported in the December 24 issue of Science, this finding explains how some bacteria know when to produce a toxin that makes infection more severe. It may lead to the design of new toxin inhibitors.

Related Articles


"Blocking or interfering with a bacterium's "detection" mechanism, should prevent toxin production and limit the severity of infection," says Michael Gilmore, PhD, lead author of the study, and currently director of research at the Schepens Eye Research Institute and professor of ophthalmology at Harvard Medical School.

Gilmore and his team have spent years studying the bacterium known as Enterococcus faecalis, one of the leading causes of hospital-acquired infections, to find new ways to treat them. These infections are frequently resistant to many, and sometimes all, antibiotics. Tens of thousands of deaths due to antibiotic resistant infection occur each year in the US, adding an estimated $ 4 Billion to health care costs. Scientist have known since 1934 that especially harmful strains of Enterococcus produce a toxin that destroys other cells, including human cells and even other types of bacteria. They also knew that this toxin was made only under some conditions. Until Gilmore's study, scientists were unable to explain how the Enterococcus knew when to make it.

In the Science study, Gilmore and his team found that this toxin is made whenever there is another cell type in the environment near the bacterium, such as a human blood cell. They discovered how these bacteria know when other cells are present, and respond accordingly.

In the laboratory, the team found that Enterococcus releases two substances into the environment. One substance sticks to foreign cells. The second substance reports back and tells the Enterococcus to make the toxin. If no cells are in the area, the first substance sticks to the second, preventing it from reporting back to the Enterococcus, and as a result, no toxin is made. According to Gilmore, "These bacteria are actively probing their environment for enemies or food. Based on whether or not they 'see' other cells, they make the toxin appropriately."

Gilmore says this discovery has several significant implications for the future. "This is a new mechanism that nature devised to 'see' the environment, and based on that information, respond accordingly. We may be able to learn from nature and adapt a similar strategy to help the aging population cope with loss of vision," says Gilmore.

"Secondly, this discovery will help us to develop new ways to treat infections that are resistant to antibiotics, making them less severe. Based on an understanding of how this toxin system works, we hope to develop toxin inhibitors," says Gilmore.

The third area of interest is currently science fiction, says Gilmore. "If bacteria can see cells in the environment, maybe we can tame these bacteria and engineer this system so that it can be used to see other things in the environment, such as minerals or possibly other disease-causing bacteria," says Gilmore.

Other members of the research team included Drs. Phillip Coburn, University of Oklahoma Health Sciences Center, Christopher Pillar, Schepens Eye Research Institute and Harvard Medical School, Wolfgang Haas, University of Rochester, and Bradley D. Jett, Oklahoma Baptist University. Dr. Michael S. Gilmore is presently Charles L. Schepens Professor of Ophthalmology, Harvard Medical School, and Marie and DeWalt Ankeny Director and Acting CEO of the Schepens Eye Research Institute.

###

Schepens Eye Research Institute is an affiliate of Harvard Medical School and the largest independent eye research institute in the world.


Story Source:

The above story is based on materials provided by Schepens Eye Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Schepens Eye Research Institute. "Antibiotic Resistant Bacterium Uses Sonar-like Strategy To 'See' Enemies Or Prey." ScienceDaily. ScienceDaily, 14 January 2005. <www.sciencedaily.com/releases/2005/01/050111172955.htm>.
Schepens Eye Research Institute. (2005, January 14). Antibiotic Resistant Bacterium Uses Sonar-like Strategy To 'See' Enemies Or Prey. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2005/01/050111172955.htm
Schepens Eye Research Institute. "Antibiotic Resistant Bacterium Uses Sonar-like Strategy To 'See' Enemies Or Prey." ScienceDaily. www.sciencedaily.com/releases/2005/01/050111172955.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins