Featured Research

from universities, journals, and other organizations

Man And Mouse Share Genome Structure

Date:
January 30, 2005
Source:
Howard Hughes Medical Institute
Summary:
In the most detailed large-scale study to date of the proteins that package DNA, researchers have mapped a family of switches that turn genes on and off. Their findings may help scientists understand regulatory mechanisms underlying cancer and human development.

In the most detailed large-scale study to date of the proteins that package DNA, researchers have mapped a family of switches that turn genes on and off. Their findings may help scientists understand regulatory mechanisms underlying cancer and human development.

The research team includes first author Bradley Bernstein, recipient of a Howard Hughes Medical Institute (HHMI) physician postdoctoral fellowship who works in the Harvard University laboratory of HHMI investigator Stuart L. Schreiber. Other co-authors are from the Broad Institute of MIT and Harvard, and Affymetrix. Their findings are published in the January 28, 2005 issue of Cell.

“Now that the human genome has been sequenced, it is vital to learn how the genome is translated to make living cells and organisms, and how we can use that information to improve human health,” said Bernstein, who is an instructor of pathology at Brigham & Women's Hospital and Harvard Medical School. “Every one of our cells has the same genome, yet is completely different. Muscle cells are different from neurons. They are different because different genes are on.”

Many scientists believe changes in the regulatory scaffolding surrounding the genome may be as important as changes in the genome itself in causing diseases such as cancer.

This regulatory structure, called chromatin, is a key regulator of gene expression in healthy and diseased cells, Bernstein said. Chromatin is composed of DNA spooled around bundles of histone proteins, and resembles a chain of beads which is then compressed into a working chromosome. Chemical tags placed on the histones alter the way chromatin is organized, thus allowing the right combination of genes to be turned on.

In their study, the researchers analyzed the chromatin structure of the two shortest human chromosomes, numbers 21 and 22, containing about two percent of the human genome. They also sampled additional regions in both the human and mouse genomes, finding similar patterns along equivalent chromosomal regions, even where the underlying DNA sequences are different.

Bernstein and Schreiber began to develop the analytical techniques several years earlier, working with the smaller yeast genome. To investigate the much larger human genome, they collaborated with Affymetrix. They isolated the DNA regions with certain major methyl and acetyl tags, and used new microarray technology to identify the underlying genetic sequences associated with the tagged chromatin. Next, they teamed up with Michael Kamal, the co-first author of the paper, Eric Lander, and their Broad Institute colleagues, for the daunting computational analysis required to interpret the resulting data.

In most cases, the mapped tags coincided with the transcription starting points of active genes, as they and others had seen earlier in the yeast. Unexpectedly, they also found tags idling over regions near genes. The researchers think these sites have important regulatory functions, because the methylation patterns are similar in comparable portions of the mouse genome. Until now, they'd been missed by more standard genome analysis tools.

Most exciting to Bernstein is the unusual density of histone tags spread over the regions of genome containing the HOX genes, which are key regulators of development.

“In most of the genome, we see short stretches associated with activated histones,” Bernstein said. “However, in the HOX regions, we see huge stretches of genome, many thousands of base pairs in length, that are completely covered by tags.” The researchers speculate that these unique chromatin structures could be activating sets of HOX genes for specific developmental programs.

This global activation may have implications for understanding mechanisms behind certain cancers, Bernstein believes. For example, proteins that place methyl groups on histones can, when mutated, cause leukemia. Bernstein hopes to apply the new technology to characterize chromatin structure in leukemic cells and gain insight into the molecular basis of disease.

“The human genome still has many surprises lurking within it,” said Lander, director of the Broad Institute and senior author on the study. “One of the most important is the mystery of how genes are turned on. The ability to take global views of chromatin in human cells holds tremendous promise for unraveling this mystery.”


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Man And Mouse Share Genome Structure." ScienceDaily. ScienceDaily, 30 January 2005. <www.sciencedaily.com/releases/2005/01/050128215451.htm>.
Howard Hughes Medical Institute. (2005, January 30). Man And Mouse Share Genome Structure. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2005/01/050128215451.htm
Howard Hughes Medical Institute. "Man And Mouse Share Genome Structure." ScienceDaily. www.sciencedaily.com/releases/2005/01/050128215451.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Doctors Fear They're Losing Battle Against Ebola

Doctors Fear They're Losing Battle Against Ebola

AP (Sep. 2, 2014) As a third American missionary is confirmed to have contracted Ebola in Liberia, doctors on the ground in West Africa fear they're losing the battle against the outbreak. (Sept. 2) Video provided by AP
Powered by NewsLook.com
Tech Giants Bet on 3D Headsets for Gaming, Healthcare

Tech Giants Bet on 3D Headsets for Gaming, Healthcare

AFP (Sep. 2, 2014) When Facebook acquired the virtual reality hardware developer Oculus VR in March for $2 billion, CEO Mark Zuckerberg hailed the firm's technology as "a new communication platform." Duration: 02:24 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins