Featured Research

from universities, journals, and other organizations

Wax Works: Wax Proves Excellent Model Of The Earth's Crust

Date:
February 2, 2005
Source:
Institute Of Physics
Summary:
Physicists in the US have proven that wax is an excellent model of the ocean floors. Using a tub of wax, geophysicists at Cornell and Columbia have produced a predictive model of tectonic microplates – one of the most important and poorly understood features of plate tectonics – for the first time.

This still image from a movie shows the formation of "tectonic microplates" — dynamic whirlpools of ocean floor found at mid-ocean ridges. Geophysicists from Cornell and Columbia University have proven that wax is a perfect model of the ocean floors. This research links proven ingenious wax models with genuine patterns in the Earth’s crust for the first time.
Credit: Courtesy of Lamont-Doherty Earth Observatory

Physicists in the US have proven that wax is an excellent model of the ocean floors. Using a tub of wax, geophysicists at Cornell and Columbia have produced a predictive model of tectonic microplates – one of the most important and poorly understood features of plate tectonics – for the first time. This research is reported today in the New Journal of Physics (http://www.njp.org) published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).

Related Articles


This breakthrough gives scientists a clearer understanding of the mechanisms of plate tectonics: how the landmasses of the Earth shift and change over time, how earthquakes are generated, volcanoes erupt, and precious metals are concentrated in rich seams. Tectonic microplates could also help identify whether this process, which many scientists argue was a key factor in triggering the evolution of life on Earth, occurs on other bodies in the Solar System.

Richard Katz, now at Columbia University, and Eberhard Bodenschatz from Cornell University (where the research was carried out), have produced the first mathematical model which successfully describes how ‘tectonic microplates’ - dynamic whirlpools of ocean floor found at mid-ocean ridges - behave. Writing in the New Journal of Physics, they announce their model which successfully predicts microplate behaviour as observed in a scale model of the ocean floor: a tank of wax heated from below. Scientists have been using wax to simulate the ocean floor since the 1970s. This research links these ingenious wax models with genuine patterns in the Earth’s crust for the first time.

Like ball-bearings trapped between two sheets of metal, tectonic microplates are rotating blocks of crust which are born where sections of mid-ocean ridge begin to overlap, then grow larger as they age, and gradually move away from the spreading ridge along with new ocean floor. They can reach sizes of up to 400km across, and rotate about 15 degrees every million years (fast by geological standards). Only 12 are known to exist, and they are one of the least well-understood features of plate tectonics.

The experiment began in 1998, deep in the basements of Cornell’s physics department. A large tank filled with wax had been set up by Professor Eberhard Bodenschatz to mimic spreading ridges on the ocean floor. The wax is heated from beneath, but cooled from above by air-conditioning units so that the surface becomes a rigid crust while the centre and base remain molten. A pair of long straight paddles move slowly away from the centre pulling the crust apart and causing new molten material to rise up and solidify at the surface, just like the creation of new ocean floor at mid-ocean ridges on the Earth.

Bodenschatz and his team of research students immediately began to notice features in the wax similar to a variety of geological features seen on Earth. They saw structures growing in the wax which were very similar to transform faults, like the San Andreas fault, rift valleys, and also the zig-zag rifts found on the surface of lava lakes in volcanic craters. They also found that when the paddles pull the surface apart at a certain rate, a rare spiral feature of mid-ocean ridges called microplates form and evolve, mimicking structures known to exist in the East-Pacific Rise such as the Easter microplate just off Easter Island in the Pacific.

Richard Katz from Columbia University said: “When I joined the research team at Cornell I became fascinated by the microplates which they could create in the wax and thought that we could use the experiment to begin to understand how real microplates on the earth come about and to accurately describe how they behave mathematically so we can predict their movement”.

They made detailed observations of the formation of microplates using a video camera mounted above the tank, looking directly down onto the surface where they were forming. Lamps were mounted in the molten wax and directed upwards so that the pictures the camera took showed the thickness of the crust because of the difference in brightness.

Using these observations, Katz and his supervisor Eberhard Bodenschatz set out to write a mathematical expression based on existing assumptions about microplate behaviour. They found that their model closely predicts microplate evolution, and so they can now predict how they’ll behave over geological time.

Katz said: “Microplates have a distinctive pattern on the sea-floor and in the wax tank. We can use our model to predict how they’ll evolve over time and how they will interact with the mid-ocean ridge and their neighboring major plates. It may also help us identify very young microplates in the crust or very ancient ones or even to identify plate tectonics on planets besides Earth.”

In their paper, Katz and Bodenschatz give an insight into why microplates form in the first place. It turns out that it might be because the mid-ocean ridge that hosts them is a strange chimera: neither transform fault nor spreading ridge but an unstable form in between. When the crust moves to become more stable, areas of crust overlap and might give birth to rotating microplates because of the forces opposing each other.

Movies showing microplate formation in wax can be viewed here: http://milou.msc.cornell.edu/papers/rich/movies/movies.html

This research is published in New Journal of Physics and can be downloaded here: New J. Phys. 7 (2005) 37


Story Source:

The above story is based on materials provided by Institute Of Physics. Note: Materials may be edited for content and length.


Cite This Page:

Institute Of Physics. "Wax Works: Wax Proves Excellent Model Of The Earth's Crust." ScienceDaily. ScienceDaily, 2 February 2005. <www.sciencedaily.com/releases/2005/02/050201195220.htm>.
Institute Of Physics. (2005, February 2). Wax Works: Wax Proves Excellent Model Of The Earth's Crust. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2005/02/050201195220.htm
Institute Of Physics. "Wax Works: Wax Proves Excellent Model Of The Earth's Crust." ScienceDaily. www.sciencedaily.com/releases/2005/02/050201195220.htm (accessed November 1, 2014).

Share This



More Earth & Climate News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Controversial French Dam Halted After Death of Protester

Controversial French Dam Halted After Death of Protester

AFP (Oct. 31, 2014) Local French authorities Friday decided to suspend work on a controversial dam after the death last week of an activist protesting against the project that sparked uproar in the country. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Raw: Hawaii Lava Inches Closer

Raw: Hawaii Lava Inches Closer

AP (Oct. 30, 2014) Aerial video shows the path lava has carved across a portion of Hawaii's big island, threatening homes in the town of Pahoa. Officials say the flow was just over 230 yards from a roadway Thursday morning. (Oct. 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins