Featured Research

from universities, journals, and other organizations

Experiments Prove Existence Of Atomic Chain 'Anchors'

Date:
February 7, 2005
Source:
National Institute Of Standards And Technology
Summary:
Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the "links" in the chain, according to new measurements by physicists at the National Institute of Standards and Technology (NIST).

The two images above show the energy levels (vertical scale) and spatial positions (white lines) of electrons within a three-atom chain. The top image shows the calculated or theoretical results; the bottom image shows the measured energy levels in a physical experiment. Electrons are most likely to be located in the red areas and least likely in the blue areas. Both images indicate that the electrons in the outermost atoms (positioned on the far left and right at the bottom) have lower energy than those within the center atom.
Credit: Image courtesy of National Institute Of Standards And Technology

Atoms at the ends of self-assembled atomic chains act like anchors with lower energy levels than the "links" in the chain, according to new measurements by physicists at the National Institute of Standards and Technology (NIST).

The first-ever proof of the formation of "end states" in atomic chains may help scientists design nanostructures, such as electrical wires made "from the atoms up," with desired electrical properties.

The NIST experiments, described in the Feb. 4 issue of the journal Science,* involved measuring and comparing the electronic properties of gold atoms in short chains assembled on silicon surfaces. Energy levels of the electrons within the end atoms of the chains were lower than those of inner atoms. This condition arises because the structural, chemical and electronic symmetry of a chain is broken at each end, and the atoms' electrons are redistributed to lower the chain's energy. The electronic structure of atomic chains is comparable to the electronic structure of bulk crystals, in which surface atoms have different properties than atoms inside the crystal.

"In the past three decades the study of surface states on crystals has been a major endeavor by research groups from all over the world," says Jason Crain, lead author of the Science paper. "Our study is the first to show the formation of localized states at the ends of single atom chains. The existence of end states will have implications for future studies of one-dimensional nanostructures."

The NIST measurements were made with a scanning tunneling microscope (STM) and were enabled, in part, by the self-assembly of the gold chains on a silicon surface. Unlike the metal surfaces used in previous STM studies of single-atom chains, the silicon surface behaved as an insulator, allowing scientists to better isolate the chains and improve measurements of their atoms' electron energy levels.

The STM, which has a needle-like tip that can apply various levels of voltage, was used to make two types of measurements of numerous chains composed of three to nine atoms. First, by maintaining a constant current between the tip and the gold-on-silicon surface, the STM produced a three-dimensional image of the surface topography. As the tip scanned across the sample, it rose and fell with changes in surface features to maintain a stable current flow. Then, by holding the STM tip at a constant distance from the surface, the scientists measured changes in current as a function of tip voltage. Measures of conductivity were used to determine the energies and spatial distribution of electrons in the chains, which showed differences between the inner and end atoms.

###

The project was funded by NIST and the Office of Naval Research.

As a non-regulatory agency of the U.S. Department of Commerce's Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.

*J.N. Crain and D.T. Pierce, "End States in One-Dimensional Atom Chains," Science, Feb. 4, 2005.


Story Source:

The above story is based on materials provided by National Institute Of Standards And Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute Of Standards And Technology. "Experiments Prove Existence Of Atomic Chain 'Anchors'." ScienceDaily. ScienceDaily, 7 February 2005. <www.sciencedaily.com/releases/2005/02/050204214602.htm>.
National Institute Of Standards And Technology. (2005, February 7). Experiments Prove Existence Of Atomic Chain 'Anchors'. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2005/02/050204214602.htm
National Institute Of Standards And Technology. "Experiments Prove Existence Of Atomic Chain 'Anchors'." ScienceDaily. www.sciencedaily.com/releases/2005/02/050204214602.htm (accessed April 20, 2014).

Share This



More Matter & Energy News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins