Featured Research

from universities, journals, and other organizations

Coastal Dead Zones May Lead To Ecosystem-based Fisheries Management

Date:
March 7, 2005
Source:
Duke University
Summary:
A new approach to managing ocean fisheries by controlling nutrient runoff far upstream in watersheds has received new support from emerging evidence that resulting coastal low-oxygen dead zones may reduce fish and shellfish harvests, said a Duke University marine scientist.

WASHINGTON, D.C. -- A new approach to managing ocean fisheries by controlling nutrient runoff far upstream in watersheds has received new support from emerging evidence that resulting coastal low-oxygen dead zones may reduce fish and shellfish harvests, said a Duke University marine scientist.

Larry Crowder, who is Stephen Toth Professor of Marine Biology at Duke's Nicholas School of the Environment and Earth Sciences, will discuss these potential long range impacts of nutrient runoff from distant farm fields at a 1:45 p.m. Feb. 20 symposium during the American Association for the Advancement of Science's 2005 annual meeting in Washington, D.C.

The symposium will take place in Workshop Room E of Exhibit Hall B North at the Marriott Wardman Park Hotel.

Crowder's research group has been studying a so-called "dead zone" that forms annually off Louisiana in the Gulf of Mexico. Water within this approximately 20,000 square-kilometer-wide bottom feature is robbed of much of its dissolved oxygen each spring in a biological response to farm fertilizer runoff that may originate far upstream along the Mississippi River, he said.

After entering the Gulf, these fertilizer nutrients fuel population explosions among microscopic marine plants. As the marine algae grow and then die, they consume most available oxygen in bottom layers.

Crowder described how fish and shrimp can evade death simply by relocating to the zone's edge. "Basically, it's the same as the way forest wildlife might aggregate on the edge of a forest fire," Crowder said in an interview. And shrimpers and fishermen exploit that knowledge by positioning their nets at the zones' periphery too, he added.

Crowder's group is studying whether this annual convergence may result in overfishing, in significant upsurges in inadvertent nettings of other untargeted marine species, called "bycatch," or in other less obvious delayed effects that may reduce commercial production.

"People have been aware for almost 20 years now that these low-oxygen zones form," he said. "But, until our work, there hasn't been a serious look at impacts on target species, shrimp, or on the fish and sea turtles that are taken as bycatch ."

Crowder said that his group's initial findings are pointing to various ways that living along dead zone edges may lower growth rates of some Gulf fish and shellfish.

"None of these lines of evidence in themselves would make a compelling case," he said. "But when you pull them all together it makes for a pretty interesting case."

His previous published studies of analogous low-oxygen zones that develop in North Carolina's Neuse River documented 30 percent reduction in growth among croakers living on the zones' margins, Crowder said. That translates into 40 percent reductions in the numbers of harvestable-sized fish.

Such zones in the Neuse have also been implicated in fish kills when wind conditions and currents conspire to trap the fish on the bottom in a way that makes it hard for them to escape the low-oxygen waters, he added.

In the Gulf, "to date no one has been able to make a link between the dead zone and the production of valuable fisheries," Crowder said. "People say, 'so what?' What impact does it have on fisheries, if any?"

If scientists do document such an impact, regulators might someday invoke a new emerging "ecosystem-based" approach to fisheries management, Crowder said. "If we are going to ask farmers in the Mississippi drainage basin to reduce nutrient loading, we need to show that it will solve the problem.

"In this symposium, I will show that things we do to the ecosystem in terms of nutrient additions can ramify to effects on fisheries," he said. "So we will have to manage fisheries in the context of changes generated somewhere up in a watershed, thousands of miles away."


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "Coastal Dead Zones May Lead To Ecosystem-based Fisheries Management." ScienceDaily. ScienceDaily, 7 March 2005. <www.sciencedaily.com/releases/2005/02/050223154654.htm>.
Duke University. (2005, March 7). Coastal Dead Zones May Lead To Ecosystem-based Fisheries Management. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2005/02/050223154654.htm
Duke University. "Coastal Dead Zones May Lead To Ecosystem-based Fisheries Management." ScienceDaily. www.sciencedaily.com/releases/2005/02/050223154654.htm (accessed September 15, 2014).

Share This



More Plants & Animals News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) — A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) — In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
Spinosaurus Could Be First Semi-Aquatic Dinosaur

Spinosaurus Could Be First Semi-Aquatic Dinosaur

Newsy (Sep. 11, 2014) — New research has shown that the Spinosaurus, the largest carnivorous dinosaur, might have been just as well suited for life in the water as on land. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins