Featured Research

from universities, journals, and other organizations

Discovery Clarifies Role Of Peptide In Biological Clock

Date:
March 18, 2005
Source:
Washington University In St. Louis
Summary:
A biologist at Washington University in St. Louis is giving the VIP treatment to laboratory mice in hopes of unraveling more clues about our biological clock. VIP is not "very important person," but vasoactive intestinal polypeptide (VIP), a neuropeptide originally found in the gut, that is also made by a specialized group of neurons in the brain.

A biologist at Washington University in St. Louis is giving the VIP treatment to laboratory mice in hopes of unraveling more clues about our biological clock.

VIP is not "very important person," but vasoactive intestinal polypeptide (VIP), a neuropeptide originally found in the gut, that is also made by a specialized group of neurons in the brain.

Erik Herzog, Ph.D., Washington University assistant professor of Biology in Arts & Sciences, has discovered that VIP is needed by the brain's biological clock to coordinate daily rhythms in behavior and physiology. Neurons in the biological clock, an area called the suprachiasmatic nucleus (SCN), keep 24-hour time and are normally synchronized as a well-oiled marching band coming onto the field at half time. Herzog and graduate student, Sara Aton, found that mice lacking the gene that makes VIP or lacking the receptor molecule for VIP suffer from internal de-synchrony. When they recorded the electrical activity of SCN neurons from these mice, they found that many had lost their beat while others were cycling but unable to synch to each other.

But when Herzog and Aton added VIP to the mice cells, the synchronicity was restored, showing that VIP couples pacemaker cells and drives rhythms in slave cells.

"VIP between SCN neurons is like a rubber band between the pendulums of two grandfather clocks, helping to synchronize their timing. Some researchers had proposed that knocking out VIP or the receptor for it stopped the clock," Herzog said. "We've found that the biological clock is still running, but its internal synchrony is uncoordinated. This causes irregular patterns of sleep and wake, for example."

The study was published on-line in Nature Neuroscience on March 6, 2005. Herzog's work is funded by the National Institutes of Health.

"In a light-dark schedule, these mice looked normal, but as soon as you leave off the lights, they reveal their internal de-synchrony," he said. "The mice showed multiple rhythms, getting up both earlier and earlier and later and later on subsequent days so that their daily activity patterns were splitting apart."

Herzog and Aton recorded neuron activity from the SCN using a multielectrode array with 60 electrodes upon which they place SCN cells, a "clock in a dish." This enabled them to record data from many cells for many days.

"We found that the VIP mutants, indeed, can generate circadian rhythms, but the neurons can't synchronize to each other," Herzog said. "We showed that we could restore rhythms to the arrhythmic neurons and synchrony to the SCN by providing VIP once a day."

The SCN is a part of the hypothalamus that can be found on the bottom of the brain just above the roof of your mouth where your optic nerves cross. There are roughly 10,000 neurons in this nucleus on either side of your brain. The timekeeping mechanism in these cells depends on daily cycles in gene activity.

Herzog found in his latest study that the percentage of rhythmic cells in the mutant SCN was very low, and he believes these rhythmic neurons are specialized circadian pacemakers.

"We suspect that at least some of the pace making cells in the SCN are VIP cells, and one of the things we'll try to do next is confirm this. We will also try to understand better how VIP synchronizes pacemakers," he said.

It is surprising that the process is regulated by a peptide, usually a slow signaling agent, rather than a neurotransmitter, associated with fast events, Herzog said.

"We're trying to understand the mechanics of how the system synchronizes and the secondary messenger systems as well," Herzog said. "We're getting closer to the heart and soul of circadian rhythmicity by uncoupling the (biological) clock."


Story Source:

The above story is based on materials provided by Washington University In St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University In St. Louis. "Discovery Clarifies Role Of Peptide In Biological Clock." ScienceDaily. ScienceDaily, 18 March 2005. <www.sciencedaily.com/releases/2005/03/050309150837.htm>.
Washington University In St. Louis. (2005, March 18). Discovery Clarifies Role Of Peptide In Biological Clock. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2005/03/050309150837.htm
Washington University In St. Louis. "Discovery Clarifies Role Of Peptide In Biological Clock." ScienceDaily. www.sciencedaily.com/releases/2005/03/050309150837.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins