Featured Research

from universities, journals, and other organizations

A Kiss That Binds: Understanding The Interaction Of Fragile X Mental Retardation Protein And Kissing Complex RNAs

Date:
April 17, 2005
Source:
Cold Spring Harbor Laboratory
Summary:
Fragile X syndrome results from loss of expression of the Fragile X mental retardation protein (FMRP), the product of the FMR1 gene. Now, Drs. Robert and Jennifer Darnell and colleagues, from The Rockefeller University, report the uncovering of a new interaction between FMRP and messenger RNAs (mRNAs) containing a tertiary RNA structure termed a "kissing complex".

Fragile X syndrome is the most common inherited form of mental retardation, affecting approximately 1 in 3600 males and 1 in 4000-6000 females. Fragile X syndrome results from loss of expression of the Fragile X mental retardation protein (FMRP), the product of the FMR1 gene. Now, Drs. Robert and Jennifer Darnell and colleagues, from The Rockefeller University, report the uncovering of a new interaction between FMRP and messenger RNAs (mRNAs) containing a tertiary RNA structure termed a "kissing complex".

Their studies, published in the April 15th issue of Genes & Development, provide a new direction for efforts to understand how the loss of FMRP function leads to the complex behavioral and cognitive defects characteristic of Fragile X syndrome.

While the importance of identifying a function for FMRP has been clear for some time, what this function actually is has continued to evade researchers. FMRP is a protein characterized by the presence of three RNA binding domains: two tandem KH-type RNA binding domains and an RGG box. Scientists have focused on the identification of FMRP RNA ligands in an effort to understand FMRP function. This effort is particularly meaningful since FMRP is believed to regulate mRNA translation in the brain, and identifying the mRNA targets of this regulation would be a huge step in understanding how loss of this protein results in the varied and complex phenotypes of Fragile X syndrome.

In most Fragile X patients, loss of FMRP is due to silencing of FMR1 resulting from the unusual amplification of a CGG repeat (over 200 copies in affected patients versus less than 60 copies in unaffected individuals) that leads to hypermethylation of FMR1 and shut down of transcription of the gene. However, Fragile X patients expressing mutations or deletions within the FMR1 gene have also been described, including a severely affected patient harboring a missense mutation that resulted in a one amino acid change, isoleucine at position 304 for asparagine, in one of the KH domains of FMRP, KH2.

Dr. Darnell and colleagues focused on understanding how this specific mutation leads to loss of FMRP function. They first screened an RNA library to identify what RNA motif is recognized by the KH2 domain. They found that the KH2 domain of FMRP recognizes a loop-loop pseudoknot, or "kissing complex" structure in the RNA, and that this recognition is abrogated by the isoleucine to asparagine mutation. Notably, they show that the association of FMRP with the translation machinery (in brain polyribosomes) can be competed out with kissing complex RNA, an important finding since previous biochemical studies have reported altered polyribosome distribution of mRNAs in Fragile X patients.

These findings will redirect the search for the RNA targets of FMRP whose misregulation is responsible for the disease, to those containing kissing complex motifs.

Though much remains to be understood in the biology leading to Fragile X syndrome and the function of FMRP, Dr. Darnell is confident that "these findings may provide a crucial link between the association of FMRP in brain polyribosomes, its proposed role in regulation mRNA translation, and neurologic dysfunction in the Fragile X syndrome".


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "A Kiss That Binds: Understanding The Interaction Of Fragile X Mental Retardation Protein And Kissing Complex RNAs." ScienceDaily. ScienceDaily, 17 April 2005. <www.sciencedaily.com/releases/2005/04/050416183454.htm>.
Cold Spring Harbor Laboratory. (2005, April 17). A Kiss That Binds: Understanding The Interaction Of Fragile X Mental Retardation Protein And Kissing Complex RNAs. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2005/04/050416183454.htm
Cold Spring Harbor Laboratory. "A Kiss That Binds: Understanding The Interaction Of Fragile X Mental Retardation Protein And Kissing Complex RNAs." ScienceDaily. www.sciencedaily.com/releases/2005/04/050416183454.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins