Featured Research

from universities, journals, and other organizations

NASA Study Finds Snow Melt Causes Large Ocean Plant Blooms

Date:
April 21, 2005
Source:
NASA/Goddard Space Flight Center
Summary:
A NASA funded study has found a decline in winter and spring snow cover over Southwest Asia and the Himalayan mountain range is creating conditions for more widespread blooms of ocean plants in the Arabian Sea.

Reversal of Monsoon Wind Direction (Jun-Sept): The temperature difference between the landmass and the ocean creates a low pressure system over the Indian subcontinent and a high pressure system over the Arabian Sea. This difference causes the winds to blow from the Southwest Arabian Sea, bringing rainfall from June to September each year. The color bar represents the concentration of chlorophyll, with blue being the smallest and red being the largest.
Credit: Joaquim Goes, Bigelow Laboratory for Ocean Sciences

A NASA funded study has found a decline in winter and spring snow cover over Southwest Asia and the Himalayan mountain range is creating conditions for more widespread blooms of ocean plants in the Arabian Sea.

Related Articles


The decrease in snow cover has led to greater differences in both temperature and pressure systems between the Indian subcontinent and the Arabian Sea. The pressure differences generate monsoon winds that mix the ocean water in the Western Arabian Sea. This mixing leads to better growing conditions for tiny, free-floating ocean plants called phytoplankton.

Lead author of the study is Joaquim Goes. He is a senior researcher at the Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine. Goes and colleagues used satellite observations of ocean color to show phytoplankton concentrations in the Western Arabian Sea have increased by more than 350 percent over the past seven years. The study is in this week's SCIENCE magazine

When winter and spring snow cover is low over Eurasia, the amount of solar energy reflected back into the atmosphere is less. A decline in the amount of snow cover means less of the sun's energy goes towards melting of snow and evaporation of wet soil. As a result the land mass heats up more in summer creating a larger temperature difference between the water of the Arabian Sea and the Indian subcontinent landmass.

The temperature difference is responsible for a disparity in pressure over land and sea, creating a low pressure system over the Indian subcontinent and a high pressure system over the Arabian Sea. This difference in pressure causes winds to blow from the Southwest Arabian Sea bringing annual rainfall to the subcontinent from June to September. In the Western Arabian Sea, these winds also cause upwelling of cooler nutrient-rich water, creating ideal conditions for phytoplankton to bloom every year during summer.

Since 1997, a reduction in snow has led to wider temperature differences between the land and ocean during summer. As a consequence, sea surface winds over the Arabian Sea have strengthened leading to more intense upwelling and more widespread blooms of phytoplankton along the coasts of Somalia, Yemen and Oman.

According to Goes, while large blooms of phytoplankton can enhance fisheries, exceptionally large blooms could be detrimental to the ecosystem. Increases in phytoplankton amounts can lead to oxygen depletion in the water column and eventually to a decline in fish populations.

The Arabian Sea hosts one of the world's largest pools of oxygen-poor water at depths between 200 and 1,000 meters (656 to 3,281 feet). Since the Arabian Sea lacks an opening to the north, the deeper waters are not well ventilated. Also when organic matter produced by phytoplankton breaks down and decomposes, more oxygen gets consumed in the process. An increase in phytoplankton could therefore cause oxygen deficiencies in the Arabian Sea to spread, leading to fish mortality.

Oxygen-depleted waters also provide the perfect environment for the growth of a specialized group of bacteria called denitrifying bacteria. These bacteria convert a nitrogen-based nutrient readily consumable by plants in seawater, called nitrate, into forms of nitrogen that most plants cannot use.

One form of nitrogen that plants cannot consume is nitrous oxide, also known as laughing gas. In the atmosphere, nitrous oxide is 310 times more potent as a greenhouse gas than carbon dioxide. Thus, as very large phytoplankton blooms deplete more oxygen from the water, the creation of nitrous oxide in the Arabian Sea could exacerbate climate change, Goes said.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "NASA Study Finds Snow Melt Causes Large Ocean Plant Blooms." ScienceDaily. ScienceDaily, 21 April 2005. <www.sciencedaily.com/releases/2005/04/050421204327.htm>.
NASA/Goddard Space Flight Center. (2005, April 21). NASA Study Finds Snow Melt Causes Large Ocean Plant Blooms. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2005/04/050421204327.htm
NASA/Goddard Space Flight Center. "NASA Study Finds Snow Melt Causes Large Ocean Plant Blooms." ScienceDaily. www.sciencedaily.com/releases/2005/04/050421204327.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins