Featured Research

from universities, journals, and other organizations

Study Offers Alternative View On How Faults Form In The Ocean's Depths

Date:
May 2, 2005
Source:
Lamont-Doherty Earth Observatory
Summary:
Scientists have long held the belief that the fracturing of the Earth's brittle outer shell into faults along the deep ocean's mountainous landscape occurs only during long periods when no magma has intruded. Challenging this predominant theory, findings from a completed study show how differences in mid-ocean ridge magma-induced activity produce distinctly different types of ocean floor faulting.

Results for stretching-dominated ridge models. The model is consistent with the large offset faults seen at the inside corners of slow-spreading segments, as well as with the asymmetry in magmatic accretion, because most magmatic accretion takes place on the side of the ridge with smaller fault offsets.
Credit: Image courtesy of Lamont-Doherty Earth Observatory

Scientists have long held the belief that the fracturing of the Earth's brittle outer shell into faults along the deep ocean's mountainous landscape occurs only during long periods when no magma has intruded. Challenging this predominant theory, findings from a completed study show how differences in mid-ocean ridge magma-induced activity produce distinctly different types of ocean floor faulting.

W. Roger Buck, Doherty Senior Research Scientist at the Lamont-Doherty Earth Observatory (LDEO), is one of a trio of scientists who developed these new models for faults seen at mid-ocean ridges where the Earth's tectonic plates split apart and basaltic magma rises to form the oceanic crust that today covers two-thirds of the planet. The scientists' work has culminated in the publishing of their findings in the April 7, 2005 issue of Nature.

Unlike faults on land, those formed along mid-ocean ridges are practically a dime a dozen. "The rate of fault generation across these ridges is a hundred times greater than on land," explains Buck. "And while land faults are easily eroded and often cut older faults in complex, hard-to-untangle ways, submarine faults break into newly formed crust and lithosphere and are little obscured by erosion. Recent observations show a huge range of fault types and sizes at ridges."

These combined factors make mid-ocean ridges "the place to learn about how faults form and grow." The team's findings challenge the standard view that all faults at these ridges result from tectonic stretching of thin near-ridge lithosphere (the Earth's brittle outer shell, where earthquakes are concentrated) in the absence of magma, hot molten rock from deep within the Earth. Among several recent observations that do not fit this standard model, two stand out: the first concerns where the faults form and the second deals with how far the faults slip. Faults formed at fast-spreading centers, like the East Pacific Rise, are tiny in comparison to faults that bound deep ocean hills at slow-spreading centers like the Mid-Atlantic Ridge. All ridge faults start off growing close to the ridge. Mid-Atlantic faults die only a short distance from where they are formed. In comparison, faults along the East Pacific Rise continue growing — although very slowly — much farther from the ridge axis. The new models show that these faults may form due to bending, not stretching, of the lithosphere.

Until a few years ago most scientists believed that the biggest faults at ridges account for around a kilometer of slip. But now we see some faults have slipped several tens of kilometers. Buck and his colleagues' study shows that special conditions may produce the larger offset "oceanic core complex" faults.

"Until the 1990s most people thought all slow-spreading crust was chopped up by many high-angle faults with the biggest of them having about a kilometer of offset," said Buck. "Then, a totally different kind of structure was found along parts of slow spreading ridges. At these oceanic core complexes hundreds of square kilometers of ocean floor are not cut by typical high-angle, ridge parallel faults and the magmatically accreted crust is thin or non-existent." One possible explanation is that these strange structures are related to faults that slip tens of kilometers and rotate so that they are nearly flat.

Modeling fault development is hard enough, but no group previously had combined simulation of fault development and magmatic dike intrusion, when magma flows and hardens into cross-cutting sheets in previously formed rock. "It is pretty clear that magma plays a big role in determining the style of faulting at a ridge. The places where the faults were smallest had the greatest supply of magma," said Buck. "At ridges, magma frequently cracks through the ridge axis." The team came up with a simple, yet very approximate, way to put dike intrusion into models of ridge faulting. The results of many experiments showed that different rates of intrusion could result in fundamentally different kinds of fault structures and topography, explaining the wide range of faults along the mid-ocean ridges. Long periods with no magma were not required.

"We were fairly constrained in some details while trying to simulate these fault formations. There are many possible ways that faults might form, and a lot of things we tried didn't work. Our models were based on the results of many experiments," said Buck. One problem they faced may have implications for how all faults form, including faults on land. "A big question is how the faults become weak: do they suddenly weaken when the rocks are stressed enough to break or is there slow wearing and smoothing of the fault as it slips?" The study shows that there has to be a sudden loss of some strength to make the kinds of small faults seen at fast-spreading ridges, but that much more weakening has to occur slowly with slip to develop faults with kilometers of offset seen at slow-spreading ridges.

Brian Tucholke, a scientist at Woods Hole Oceanographic Institution in Massachusetts, likes the idea that really big ridge faults form only when the amount of magmatism is "just right," calling this the "Goldilocks" effect. Tucholke has been studying ridge faulting for several decades and thinks he has evidence that supports the idea.

The team's study makes its debut at a time when questions about fault formation within the ocean's depths have captured global attention, due largely to the recent earthquakes near Sumatra, which caused the Indian Ocean tsunami. According to Buck, however, faulting across mid-ocean ridges is hardly a cause for alarm.

"There are frequent earthquakes caused by mid-ocean range faulting but they tend to be small," said Buck. "The critical difference lies in the fact that the Sumatra earthquake was caused by plates moving together as opposed to those moving apart as in the case of mid-ocean ridge faults. There isn't much to be afraid of, but there is a lot to be learned."


Story Source:

The above story is based on materials provided by Lamont-Doherty Earth Observatory. Note: Materials may be edited for content and length.


Cite This Page:

Lamont-Doherty Earth Observatory. "Study Offers Alternative View On How Faults Form In The Ocean's Depths." ScienceDaily. ScienceDaily, 2 May 2005. <www.sciencedaily.com/releases/2005/04/050428180237.htm>.
Lamont-Doherty Earth Observatory. (2005, May 2). Study Offers Alternative View On How Faults Form In The Ocean's Depths. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2005/04/050428180237.htm
Lamont-Doherty Earth Observatory. "Study Offers Alternative View On How Faults Form In The Ocean's Depths." ScienceDaily. www.sciencedaily.com/releases/2005/04/050428180237.htm (accessed April 18, 2014).

Share This



More Earth & Climate News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com
Deadly Avalanche Sweeps Slopes of Mount Everest

Deadly Avalanche Sweeps Slopes of Mount Everest

AP (Apr. 18, 2014) At least six Nepalese guides are dead after an avalanche swept the slopes of Mount Everest along a route used to climb the world's highest peak. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins