Featured Research

from universities, journals, and other organizations

Microbes Yield Secrets Of Survival

Date:
May 10, 2005
Source:
Lawrence Livermore National Laboratory
Summary:
The first comprehensive study of the proteins in a microbial community is providing insights into how microorganisms evolve, specialize and cooperate in order to adapt to extreme conditions of temperature, acidity, and toxicity.

Close-up view of biofilm growing onto the water from the pyrite surface of the Richmond mine.
Credit: Photo Clara Chan/UC Berkeley

LIVERMORE, Calif. — When humans gather in communities, they specialize and adapt. Farmers grow crops and raise animals for food based on the area’s climate and soil. Builders fashion structures engineered to keep their inhabitants warm in winter and cool in summer. Physicians tend to the sick; police and firefighters protect the public.

Related Articles


Communities of microorganisms, researchers are finding, exhibit very similar behavior – genetically evolving, specializing and cooperating in ways that allow them to adapt to extreme conditions of temperature, acidity, toxicity and pressure.

In the first comprehensive study of gene expression in a microbial community from an “extreme” natural environment, scientists from Lawrence Livermore and Oak Ridge national laboratories, the University of California, Berkeley, and Xavier University in New Orleans have identified more than 2,000 proteins produced by five key species in the community. More than 500 of the proteins – chains of amino acids linked together in an order specified by a gene's DNA sequence – appear to be unique to the community, which thrives in hot, highly acidic conditions in an Environmental Protection Agency Superfund site at an abandoned mine at Iron Mountain, Calif. A report on the research, “Community Proteomics of a Natural Microbial Biofilm,” appears online today in Science Express.

“This is the first effort to accumulate information on genes that are expressed within a natural community, and one that has a major environmental impact,” said Michael Thelen, a protein biochemist at Lawrence Livermore. “One of the most interesting things we found is that there are large numbers of proteins that don’t resemble any other proteins we know about. Many are enzymes that function to maintain the correct structure of other proteins that are exposed to the unusually harsh acidic environment.”

The Iron Mountain microbial community, which consists of bacteria and archaea, has been under study for nine years by a research team led by Jill Banfield , professor of earth and planetary science and of environmental science, policy and management at UC Berkeley. Last year it became the first microbial community characterized at the genetic level through large-scale genome sequencing at the DOE Joint Genome Institute in Walnut Creek, Calif.

“This work illustrates the power of the genome sequencing done at the Department of Energy’s Joint Genome Institute to contribute to understanding the microbiological communities living at contaminated sites,” said Dr. Raymond L. Orbach, Director of DOE’s Office of Science. “Now scientists can investigate not only the ‘community genome,’ but also the resulting ‘community proteome’ for enzymes and pathways that can help clean up some of the worst environmental sites in the nation. This underscores the value of basic research carried out by the DOE Genomics:GTL Program that can develop novel approaches and solutions to national challenges."

The microorganisms, known as "extremophiles" for their affinity to harsh environments, grow as a biofilm at the Richmond Mine near Redding in Northern California. The complex interaction of microbes, water and exposed ore at the mine has generated dangerously high levels of sulfuric acid and toxic heavy metals, known as acid mine drainage.

The microbes are densely packed in the pink biofilm, which is just a few millimeters thick and floats on the surface of the mine water. The biofilm is a self-sustaining system, using carbon and nitrogen from the atmosphere within the mine and deriving energy from iron that has been leached out of the iron sulfide rock, also known as pyrite or “fool’s gold.”

The researchers used an analytical technique called mass spectrometry to identify the proteins present in the biofilm, then correlated them with genes from each of the major organisms identified in the earlier genomic study. They found that many community functions, such as nitrogen fixation, are handled by specialized microbes.

“We found a cytochrome protein made in abundance by one bacterial member of the community, Leptospirillum Group II, that’s a key factor connecting the biology with the environmental surroundings – it’s likely the first step in iron oxidation through an electron capture by the cytochrome,” Thelen said.“We also found that a different bacterium, Leptospirillum Group III, apparently makes more of the polysaccharide that is needed as a matrix or housing material for the biofilm community.”

Thelen said researchers still have much to learn about the molecular mechanisms involved in assembling microbial communities, the partitioning of metabolic tasks within the communities, and how carbon, nitrogen and energy resources are allocated into metabolic pathways.The information could ultimately be useful for understanding the functioning of biofilms in a variety of environments, including some with implications for human health.

“These organisms have evolved to adapt to their specific environment,” Thelen said, “and as they invent new methods for doing this, they come up with genes that are different enough from other organisms to enable them to survive in that particular niche. We just have started to find how many of these genes are not understood. It’s just now coming to light how much of the genome is still a mystery.”

Founded in 1952, Lawrence Livermore National Laboratory has a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Lawrence Livermore National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Lawrence Livermore National Laboratory. "Microbes Yield Secrets Of Survival." ScienceDaily. ScienceDaily, 10 May 2005. <www.sciencedaily.com/releases/2005/05/050509174330.htm>.
Lawrence Livermore National Laboratory. (2005, May 10). Microbes Yield Secrets Of Survival. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2005/05/050509174330.htm
Lawrence Livermore National Laboratory. "Microbes Yield Secrets Of Survival." ScienceDaily. www.sciencedaily.com/releases/2005/05/050509174330.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins