Featured Research

from universities, journals, and other organizations

Supersolids -- Can Atoms Unify And Flow Without Resistance?

Date:
May 18, 2005
Source:
Penn State / Eberly College Of Science
Summary:
Imagine you have an orchestra together, but everyone is playing their own tune, until they begin to follow a conductor. In a normal solid, every atom has its own behavior until very close to absolute zero. Then quantum mechanics takes over and dictates everyone to play the same tune.

Torsional oscillator used by Moses Chan and Eun-Seong Kim to discover a new phase of matter.
Credit: Photo courtesy of Moses Chan

"Imagine you have an orchestra together, but everyone is playing their own tune, until they begin to follow a conductor. In a normal solid, every atom has its own behavior until very close to absolute zero. Then quantum mechanics takes over and dictates everyone to play the same tune."

That's physics professor Moses Chan's musical metaphor for his discovery that atoms in a solid can condense into what he likes to call "one giant atom," a new phase of matter called a supersolid. Together with post-doctoral associate Eun-Seong Kim, Chan found that when a particular isotope of helium gas has frozen into a crystal at a fraction of a degree above absolute zero, part of it exhibits a property only seen before in superfluids: no friction.

To understand frictionless flow, says Chan, think of a bunch of kids sitting on a spinning merry-go-round. Normally, the more kids on the merry-go-round, the harder it is to stop the movement and reverse its direction. Chan and Kim set up an oscillator that spins back and forth like a merry-go-round shifting direction. They found that helium crystals in a normal solid state behaved as expected, with each additional bit of crystal adding to the mass of the "merry-go-round" and increasing the resistance.

However when those same crystals are frozen below 0.2 degrees Kelvin, something unexpected happens: one percent of the solid helium begins to flow without resistance. "It's as if a portion of the kids on that merry-go-round are sitting on perfectly smooth ball bearings, unaffected by the merry-go-round sliding back and forth underneath them," explains Chan. This allows the crystal to oscillate faster, as if the crystal has suddenly become lighter--or the kids have lost weight in mid-spin. Chan and Kim knew that the matter had not been lost because the missing mass re-materialized with the slightest rise in temperature, and the oscillation slowed back down to normal.

Although the existence of supersolids was predicted decades ago, prior attempts to find evidence for them had come up empty. "One of the reasons why this phenomenon has not been seen before is that no other experimental group has oscillated the solid helium as gently as we have," Chan explains. "With harder oscillations, the superflow effect will go away."

Kim and Chan's result forces theoretical physicists to rethink how to distinguish solids from liquids when considering quantum effects.

In quantum terms, Chan points out, the behavior of any atom can be described both as a particle and as a wave-packet. An individual wave-packet increases in size as it is cooled, especially when the thermometer drops close to absolute zero. Where at higher temperatures atoms are normally locked in a grid, like rows of people sitting in an auditorium, near zero the wave-packets expand and overlap with their neighbors.

In classical physics, objects cannot share the same space. "If I run into you, there will be a collision and the motion will stop," Chan says. "But in quantum mechanics, we become one thing."

When the supercooled helium atoms expanded out into one another, he continues, they lost their individuality and became one giant atom. It's as if that theater audience became a single, room-sized person.

###

Moses Chan, Ph.D., is associate director of the Center for Nanoscale Science and Evan Pugh professor of physics at Penn State. Eun-Seong Kim, Ph.D., is a post-doctoral associate in physics. Their work was published in the journal Nature in January 2004.


Story Source:

The above story is based on materials provided by Penn State / Eberly College Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Penn State / Eberly College Of Science. "Supersolids -- Can Atoms Unify And Flow Without Resistance?." ScienceDaily. ScienceDaily, 18 May 2005. <www.sciencedaily.com/releases/2005/05/050518103209.htm>.
Penn State / Eberly College Of Science. (2005, May 18). Supersolids -- Can Atoms Unify And Flow Without Resistance?. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2005/05/050518103209.htm
Penn State / Eberly College Of Science. "Supersolids -- Can Atoms Unify And Flow Without Resistance?." ScienceDaily. www.sciencedaily.com/releases/2005/05/050518103209.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins