Featured Research

from universities, journals, and other organizations

Supersolids -- Can Atoms Unify And Flow Without Resistance?

Date:
May 18, 2005
Source:
Penn State / Eberly College Of Science
Summary:
Imagine you have an orchestra together, but everyone is playing their own tune, until they begin to follow a conductor. In a normal solid, every atom has its own behavior until very close to absolute zero. Then quantum mechanics takes over and dictates everyone to play the same tune.

Torsional oscillator used by Moses Chan and Eun-Seong Kim to discover a new phase of matter.
Credit: Photo courtesy of Moses Chan

"Imagine you have an orchestra together, but everyone is playing their own tune, until they begin to follow a conductor. In a normal solid, every atom has its own behavior until very close to absolute zero. Then quantum mechanics takes over and dictates everyone to play the same tune."

That's physics professor Moses Chan's musical metaphor for his discovery that atoms in a solid can condense into what he likes to call "one giant atom," a new phase of matter called a supersolid. Together with post-doctoral associate Eun-Seong Kim, Chan found that when a particular isotope of helium gas has frozen into a crystal at a fraction of a degree above absolute zero, part of it exhibits a property only seen before in superfluids: no friction.

To understand frictionless flow, says Chan, think of a bunch of kids sitting on a spinning merry-go-round. Normally, the more kids on the merry-go-round, the harder it is to stop the movement and reverse its direction. Chan and Kim set up an oscillator that spins back and forth like a merry-go-round shifting direction. They found that helium crystals in a normal solid state behaved as expected, with each additional bit of crystal adding to the mass of the "merry-go-round" and increasing the resistance.

However when those same crystals are frozen below 0.2 degrees Kelvin, something unexpected happens: one percent of the solid helium begins to flow without resistance. "It's as if a portion of the kids on that merry-go-round are sitting on perfectly smooth ball bearings, unaffected by the merry-go-round sliding back and forth underneath them," explains Chan. This allows the crystal to oscillate faster, as if the crystal has suddenly become lighter--or the kids have lost weight in mid-spin. Chan and Kim knew that the matter had not been lost because the missing mass re-materialized with the slightest rise in temperature, and the oscillation slowed back down to normal.

Although the existence of supersolids was predicted decades ago, prior attempts to find evidence for them had come up empty. "One of the reasons why this phenomenon has not been seen before is that no other experimental group has oscillated the solid helium as gently as we have," Chan explains. "With harder oscillations, the superflow effect will go away."

Kim and Chan's result forces theoretical physicists to rethink how to distinguish solids from liquids when considering quantum effects.

In quantum terms, Chan points out, the behavior of any atom can be described both as a particle and as a wave-packet. An individual wave-packet increases in size as it is cooled, especially when the thermometer drops close to absolute zero. Where at higher temperatures atoms are normally locked in a grid, like rows of people sitting in an auditorium, near zero the wave-packets expand and overlap with their neighbors.

In classical physics, objects cannot share the same space. "If I run into you, there will be a collision and the motion will stop," Chan says. "But in quantum mechanics, we become one thing."

When the supercooled helium atoms expanded out into one another, he continues, they lost their individuality and became one giant atom. It's as if that theater audience became a single, room-sized person.

###

Moses Chan, Ph.D., is associate director of the Center for Nanoscale Science and Evan Pugh professor of physics at Penn State. Eun-Seong Kim, Ph.D., is a post-doctoral associate in physics. Their work was published in the journal Nature in January 2004.


Story Source:

The above story is based on materials provided by Penn State / Eberly College Of Science. Note: Materials may be edited for content and length.


Cite This Page:

Penn State / Eberly College Of Science. "Supersolids -- Can Atoms Unify And Flow Without Resistance?." ScienceDaily. ScienceDaily, 18 May 2005. <www.sciencedaily.com/releases/2005/05/050518103209.htm>.
Penn State / Eberly College Of Science. (2005, May 18). Supersolids -- Can Atoms Unify And Flow Without Resistance?. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2005/05/050518103209.htm
Penn State / Eberly College Of Science. "Supersolids -- Can Atoms Unify And Flow Without Resistance?." ScienceDaily. www.sciencedaily.com/releases/2005/05/050518103209.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins