Featured Research

from universities, journals, and other organizations

Climate Model Links Higher Temperatures To Prehistoric Extinction

Date:
August 28, 2005
Source:
National Center for Atmospheric Research/University Corporation for Atmospheric Research
Summary:
Scientists at the National Center for Atmospheric Research have created a detailed computer simulation showing Earth's climate at the time of the greatest mass extinction in history. The work supports a theory that increased atmospheric levels of carbon dioxide triggered the Permian extinction 251 million years ago.

This image shows annual mean surface temperatures in degrees Celsius at the time of the Permian extinction. It is based on a computer simulation generated by the Community Climate System Model at NCAR. (Illustration courtesy Jeff Kiehl, NCAR.)

BOULDER—Scientists at the National Center for AtmosphericResearch (NCAR) have created a computer simulation showing Earth'sclimate in unprecedented detail at the time of the greatest massextinction in the planet's history. The work gives support to a theorythat an abrupt and dramatic rise in atmospheric levels of carbondioxide triggered the massive die-off 251 million years ago. Theresearch appears in the September issue of Geology.

"The resultsdemonstrate how rapidly rising temperatures in the atmosphere canaffect ocean circulation, cutting off oxygen to lower depths andextinguishing most life," says NCAR scientist Jeffrey Kiehl, the leadauthor.

Kiehl and coauthor Christine Shields focused on thedramatic events at the end of the Permian Era, when an estimated 90 to95% of all marine species, as well as about 70% of all terrestrialspecies, became extinct. At the time of the event, higher-latitudetemperatures were

18 to 54 degrees Fahrenheit (10 to 30 degreesCelsius) higher than today, and extensive volcanic activity hadreleased large amounts of carbon dioxide and sulfur dioxide into theatmosphere over a 700,000-year period.

To solve the puzzle of howthose conditions may have affected climate and life around the globe,the researchers turned to the Community Climate System Model (CCSM).One of the world's premier climate research tools, the model canintegrate changes in atmospheric temperatures with ocean temperaturesand currents. Research teams had previously studied the Permianextinction with more limited computer models that focused on a singlecomponent of Earth's climate system, such as the ocean.

The CCSMindicated that ocean waters warmed significantly at higher latitudesbecause of rising atmospheric levels of carbon dioxide (CO2), agreenhouse gas. The warming reached a depth of about 10,000 feet (4,000meters), interfering with the normal circulation process in whichcolder surface water descends, taking oxygen and nutrients deep intothe ocean.

As a result, ocean waters became stratified withlittle oxygen, a condition that proved deadly to marine life. This inturn accelerated the warming, since marine organisms were no longerremoving carbon dioxide from the atmosphere.

"The implication ofour study is that elevated CO2 is sufficient to lead to inhospitableconditions for marine life and excessively high temperatures over landwould contribute to the demise of terrestrial life," the authorsconcluded in the article.

The CCSM's simulations showed thatocean circulation was even more stagnant than previously thought. Inaddition, the research demonstrated the extent to which computer modelscan successfully simulate past climate events. The CCSM appeared tocorrectly capture key details of the late Permian, including increasedocean salinity and sea surface temperatures in the high latitudes thatpaleontologists believe were 14 degrees Fahrenheit (8 degrees Celsius)higher than present.

The modeling presented unique challengesbecause of limited data and significant geographic differences betweenthe Permian and present-day Earth. The researchers had to estimate suchvariables as the chemical composition of the atmosphere, the amount ofsunlight reflected by Earth's surface back into the atmosphere, and themovement of heat and salinity in the oceans at a time when all thecontinents were consolidated into the giant land mass known as Pangaea.

"Theseresults demonstrate the importance of treating Earth's climate as asystem involving physical, chemical , and biological processes in theatmosphere, oceans, and land surface, all acting in an interactivemanner," says Jay Fein, director of NSF's climate dynamics program,which funded the research. "Other studies have reached similarconclusions. What's new here is the application of a detailed versionof one of the world's premier climate system models, the CCSM, tounderstand how rising levels of atmospheric carbon dioxide affectedconditions in the world's oceans and land surfaces enough to trigger amassive extinction hundreds of millions of years ago."


Story Source:

The above story is based on materials provided by National Center for Atmospheric Research/University Corporation for Atmospheric Research. Note: Materials may be edited for content and length.


Cite This Page:

National Center for Atmospheric Research/University Corporation for Atmospheric Research. "Climate Model Links Higher Temperatures To Prehistoric Extinction." ScienceDaily. ScienceDaily, 28 August 2005. <www.sciencedaily.com/releases/2005/08/050826081605.htm>.
National Center for Atmospheric Research/University Corporation for Atmospheric Research. (2005, August 28). Climate Model Links Higher Temperatures To Prehistoric Extinction. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2005/08/050826081605.htm
National Center for Atmospheric Research/University Corporation for Atmospheric Research. "Climate Model Links Higher Temperatures To Prehistoric Extinction." ScienceDaily. www.sciencedaily.com/releases/2005/08/050826081605.htm (accessed September 2, 2014).

Share This




More Earth & Climate News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands of Fish Dead in Mexico Lake

Raw: Thousands of Fish Dead in Mexico Lake

AP (Sep. 2, 2014) — Over 53 tons of rotting fish have been removed from Lake Cajititlan in western Jalisco state. Authorities say that the thousands of fish did not die of natural causes. (Sep. 2) Video provided by AP
Powered by NewsLook.com
Raw: Iceland Volcano Spewing Smoke

Raw: Iceland Volcano Spewing Smoke

AP (Sep. 2, 2014) — The alert warning for the area surrounding Iceland's Bardarbunga volcano was kept at orange on Tuesday, indicating increased unrest with greater potential for an eruption. Smoke is spewing from the volcano, and lava is spouting nearby. (Sept. 2) Video provided by AP
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) — The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Sharks Off the Menu and on the Tourist Trail in Palau

Sharks Off the Menu and on the Tourist Trail in Palau

AFP (Sep. 2, 2014) — Tourists in Palau clamour to dive with sharks thanks to a pioneering conservation initiative -- as the island nation plans to completely ban commercial fishing in its vast ocean territory. 01:15 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins