Featured Research

from universities, journals, and other organizations

MELT Data Sheds New And Surprising Light On Birth Of Oceanic Plates

Date:
September 14, 2005
Source:
Brown University
Summary:
In the first joint interpretation of data from the landmark MELT study, a team of scientists including Donald Forsyth of Brown University has found unexpected changes in the patterns of seismic velocity and electrical conductivity near the East Pacific Rise, changes due to dehydration and cooling. Results are published in Nature.

The MELT Project (Mantle Electromagnetic and Tomography): Data from 81 instruments on the seafloor has yielded important new understandings of how the Earth’s crust is formed.
Credit: Image courtesy of Brown University

Forcesthat shape these young oceanic plates have come into clearer focusthrough research conducted by scientists at the Woods HoleOceanographic Institution, Brown University and the Japan Agency forMarine-Earth Science and Technology.

The research represents thefirst time that seismic and electromagnetic data were analyzed intandem from 1995 Mantle Electromagnetic and Tomography, or MELT,Experiment. MELT employed 51 ocean-bottom seismometers and 30magnetotelluric receivers two miles under the sea to measure soundwaves and magnetic fields along the East Pacific Rise, making it one ofthe largest marine geophysical experiments ever conducted.

In apaper published in Nature, the team notes that in rock down to a depthof about 60 kilometers below the ocean floor, electrical currentsconduct poorly and sound waves travel rapidly. Deeper down, beyond 60kilometers, there is a dramatic increase in electrical conductivity,and sound waves travel at their slowest.

A switch in seismic andelectrical properties with depth was expected. Researchers weresurprised, however, at how close to the East Pacific Rise thisstructure develops and how little it changes with increasing distancefrom the rise.

Brown marine geophysicist Donald Forsyth said theteam, led by Robert Evans from the Woods Hole OceanographicInstitution, has a theory about the cause of the sudden compositionalchanges at 60 kilometers: dehydration.

As magma migrates to thesurface to form crust at the rise, it leaves behind a dry, residuallayer about 60 kilometers thick. This change from “dry” surface rock to“damp” rock below it increases electrical conductivity and slowsseismic velocity, the researchers write.

Here is what they didnot expect: These changes occur, the team found, less than 100kilometers away from the highest point on the ridge. And the seismicand electrical measurements remained nearly constant at least about 500kilometers away from the crest.

Separating seafloor guides magmaup to mid-ocean ridges such as the East Pacific Rise, where the moltenrock erupts, fans out along the ocean floor and cools to form newcrust. Cooling allows sound waves and electrical currents to travelfaster. But scientists thought this cooling – and the resulting changesin the rock – would be gradual.

“About two-thirds of the Earth’ssurface is oceanic crust – and it is all formed at ridges,” Forsythsaid. “So this work helps us better understand the basic processes ofhow this crust is formed.”

The National Science Foundation funded MELT and the latest research.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "MELT Data Sheds New And Surprising Light On Birth Of Oceanic Plates." ScienceDaily. ScienceDaily, 14 September 2005. <www.sciencedaily.com/releases/2005/09/050909075217.htm>.
Brown University. (2005, September 14). MELT Data Sheds New And Surprising Light On Birth Of Oceanic Plates. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2005/09/050909075217.htm
Brown University. "MELT Data Sheds New And Surprising Light On Birth Of Oceanic Plates." ScienceDaily. www.sciencedaily.com/releases/2005/09/050909075217.htm (accessed July 30, 2014).

Share This




More Earth & Climate News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Waves In Arctic Ocean Threaten Polar Ice

Big Waves In Arctic Ocean Threaten Polar Ice

Newsy (July 30, 2014) Big waves in parts of the Arctic Ocean are unprecedented, mainly because they used to be covered in ice. Video provided by Newsy
Powered by NewsLook.com
Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins