Featured Research

from universities, journals, and other organizations

Myelin Suppresses Plasticity In The Mature Brain

Date:
September 30, 2005
Source:
Yale University
Summary:
Yale School of Medicine researchers report in Science this week genetic evidence for the hypothesis that myelination, or formation of a protective sheath around a nerve fiber, consolidates neural circuitry by suppressing plasticity in the mature brain.

New Haven, Conn.-Yale School of Medicine researchers report inScience this week genetic evidence for the hypothesis that myelination,or formation of a protective sheath around a nerve fiber, consolidatesneural circuitry by suppressing plasticity in the mature brain.

Related Articles


This finding has implications for research on restoring mobility topeople who have lost motor functions due to spinal cord injury,multiple sclerosis, Lou Gehrig's disease, and other central nervoussystem disorders.

"The failure of surviving neurons to reestablish functionalconnection is most obvious after spinal cord injury, but limited nervecell regeneration and plasticity is central to a range of neurologicaldisorders, including stroke, head trauma, multiple sclerosis, andneurodegenerative disease," said senior author Stephen Strittmatter,professor in the Departments of Neurology and Neurobiology. "Recoveryof motor function after serious damage to the mature brain isfacilitated by structural and synaptic plasticity."

Strittmatter's laboratory studies how myelin in the centralnervous system physically limits axonal growth and regeneration aftertraumatic and ischemic injury, when blood supply is cut off. Aphysiological role for the myelin inhibitor pathway has not beendefined.

Blocking vision in one eye normally alters ocular dominance inthe cortex of the brain only during a critical developmental period, or20 to 32 days postnatal in mice. Strittmatter's lab, working incollaboration with Nigel Daw, M.D., professor of ophthalmology andneuroscience, and his group, found that mutations in the Nogo-66receptor (NgR) affect plasticity of ocular dominance. In mice withaltered NgR, plasticity during the critical period is normal, but itcontinues abnormally so that ocular dominance later in development issimilar to the plasticity of juvenile stages.

###

Science (September 30, 2005)


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Cite This Page:

Yale University. "Myelin Suppresses Plasticity In The Mature Brain." ScienceDaily. ScienceDaily, 30 September 2005. <www.sciencedaily.com/releases/2005/09/050930081337.htm>.
Yale University. (2005, September 30). Myelin Suppresses Plasticity In The Mature Brain. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2005/09/050930081337.htm
Yale University. "Myelin Suppresses Plasticity In The Mature Brain." ScienceDaily. www.sciencedaily.com/releases/2005/09/050930081337.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins