Featured Research

from universities, journals, and other organizations

Scientists Report A New Method To Speed Bird Flu Vaccine Production

Date:
November 8, 2005
Source:
University of Wisconsin-Madison
Summary:
In the event of an influenza pandemic, the world's vaccine manufacturers will be in a race against time to forestall calamity. But a new technique may make life-saving inoculations more readily available by more efficiently producing the disarmed viruses that are the seed stock for making flu vaccine.

Yoshihiro Kawaoka (right) and lab technician Barry McClernon oversee an experiment in Kawaoka's laboratory at the UW-Madison School of Veterinary Medicine. Kawaoka, a professor in the department of pathobiological sciences, is an international authority on influenza. Research in his lab has helped detail why some viruses are more pathogenic than others, and how vaccine production might be improved.
Credit: Photo : Michael Forster Rothbart

In the event of an influenza pandemic, the world's vaccine manufacturers will be in a race against time to forestall calamity. But now, thanks to a new technique to more efficiently produce the disarmed viruses that are the seed stock for making flu vaccine in large quantities, life-saving inoculations may be available more readily than before. The work is especially important as governments worldwide prepare for a predicted pandemic of avian influenza.

Writing this week (Oct. 31, 2005) in the online edition of the Proceedings of the National Academies of Science (PNAS), a team of researchers from the University of Wisconsin-Madison and the University of Tokyo report a new way to generate genetically altered influenza virus. The lab-made virus - whose genes are manipulated to disarm its virulent nature - can be seeded into chicken eggs to generate the vaccine used in inoculations, which prepare the human immune system to recognize and defeat the wild viruses that spread among humans in an epidemic or pandemic.

In their report, a team led by UW-Madison virologists Yoshihiro Kawaoka and Gabriele Neumann, describes an improved "reverse genetics" technique that makes it easier to make a seed virus in monkey kidney cells, which, like tiny factories, churn out millions of copies of the disarmed virus to be used to make vaccines.

In nature, viruses commandeer a cell's reproductive machinery to make new virus particles, which go on to infect other cells and make yet more virus particles. Vaccine makers use a monkey kidney cell line to make non-virulent viruses that serve as the raw material for vaccines. The technique reported by the Wisconsin team improves upon a previous reverse genetics method (developed by Kawaoka's group in 1999) by significantly reducing the number of plasmid vectors required to ferry viral genes into the monkey kidney cells used to produce the virus particles to make vaccines. "Compared to other types of cells, which are not approved for vaccine production, it is not always easy to introduce plasmids into the monkey kidney cells, which are approved for such use," says Kawaoka, an influenza expert and a professor of pathobiological sciences in UW-Madison's School of Veterinary Medicine. Monkey kidney cells are used routinely for generation of seed strains for vaccine production because they are not known to carry any unknown infectious agents and do not cause tumors.

According to Kawaoka, "application of the new system may be especially advantageous in situations of outbreaks of highly pathogenic avian influenza viruses."

When a new strain of highly virulent influenza emerges to infect humans, vaccine makers must tailor their vaccines to match it because, genetically, the virus is always different. The process is a race against time and can take months depending on how quickly new strains are identified, genetically disarmed and subsequently generated in the lab for use to make vaccines in large quantities. The new technique promises to ensure ready generation of seed strains for the production of vaccines required to blunt the spread of influenza. In the event of an outbreak of especially virulent strains of influenza, such as the H5N1 or "bird flu" viruses now being monitored by scientists, any efficiency in the manufacture of vaccines will be important.

The method devised by Kawaoka and his colleagues reduces the number of plasmids required to introduce viral genes into the monkey kidney cell lines used to mass produce the deactivated virus for use in vaccine manufacture. "By reducing the number of plasmids, we increase the efficiency of virus production," Kawaoka explains.

In addition to Kawaoka, the new PNAS report was authored by Neumann of the UW-Madison School of Veterinary Medicine, Ken Fujii of the University of Tokyo's Institute of Medical Sciences, and Yoichiro Kino of Japan's Chemo-Sero Therapeutic Research Institute. The work was funded by grants from the U.S. National Institutes of Health, the Ministries of Education, Culture, Sports, Science and Technology of Japan, and by the Core Research for Evolutional Science and Technology.



Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Scientists Report A New Method To Speed Bird Flu Vaccine Production." ScienceDaily. ScienceDaily, 8 November 2005. <www.sciencedaily.com/releases/2005/11/051108081947.htm>.
University of Wisconsin-Madison. (2005, November 8). Scientists Report A New Method To Speed Bird Flu Vaccine Production. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2005/11/051108081947.htm
University of Wisconsin-Madison. "Scientists Report A New Method To Speed Bird Flu Vaccine Production." ScienceDaily. www.sciencedaily.com/releases/2005/11/051108081947.htm (accessed April 17, 2014).

Share This



More Plants & Animals News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins