Featured Research

from universities, journals, and other organizations

Taking A Bite Out Of The Problem: Researchers Devise Dinosaur Classification Method

Date:
November 10, 2005
Source:
Washington University in St. Louis
Summary:
Josh Smith, PhD, assistant professor of earth and planetary sciences at Washington University in St. Louis, has concocted a mathematical scheme for identifying dinosaurs based upon measurements of their copious Mesozoic dental droppings. His method could help paleobiologists identify and reconstruct the lives of the creatures that roamed our terra firma many millions of years ago.

Josh Smith compares tooth measurements of unidentified dinosaur species with those of known *Tyrannosaurus* specimens to create a preliminary — though rigorous — method of dinosaur classification.
Credit: Image courtesy of Washington University in St. Louis

What do you get when you cross Carcharodontosaurus with Majungatholus? Good luck telling the two apart. Owing to paltry numbers of whole specimens that fail to illuminate a range of intraspecies morphological variation, dinosaur classification can be a task as gargantuan as some of its famed species. But Josh Smith, Ph.D., assistant professor of earth and planetary sciences at Washington University in St. Louis, has concocted a mathematical scheme for identifying dinosaurs based upon measurements of their copious Mesozoic dental droppings. His method could help paleobiologists identify and reconstruct the lives of the creatures that roamed our terra firma many millions of years ago.

Smith, who claims he's "not very good at math," and his coauthors, David R. Vann and Peter Dodson of the University of Pennsylvania, devised a quantitative methodology by which an isolated tooth of a predatory dinosaur — a theropod — can be correlated with a given genus. They used a variety of measurements — some of which had been defined by previous workers — that describe the basic size and general shape of the teeth as well as devised functions that help quantitatively describe the shapes of the curved surfaces possessed by the teeth. The result was a preliminary but rigorous method of classifying theropod teeth with established genera. Smith and his colleagues published their in work in a recent issue of The Anatomical Record (Vol. 285, 2005).

"My whole point was to take an isolated tooth and figure out what dinosaur it belonged to," Smith explained. "The questions I'm interested in are different than 'what did this thing eat?' I'm interested more in teeth as tools for dinosaur identification rather than the teeth as teeth themselves."

Teeth as hardy identifiers

People like teeth. The same mineral that helps us chaw our way to Thanksgiving bliss allows paleontologists like Smith to study a time period so far removed from our own that traces of bones and enamel are among the only clues to the past. Mesozoic-aged dinosaurs, living between 225 and 65 million years ago, are referred to as polyphyodont animals because they continually shed and replaced teeth throughout their lives. Tooth replacement introduces the hardest and most resilient substance in the vertebrate body, enamel, into the local environment many times over as old teeth are lost and fall from the mouths of their owners into streams and onto the forest floor. After countless tooth replacements and millions of years of sedimentation, Smith and his colleagues have uncovered an ample data set of preserved dinosaur enamel: Smith's Rosetta stone of theropod classification.

"The problem is that theropod teeth are simple enough that everyone has ignored them for the last 200 years, " Smith said. He said that the simple shapes of theropod teeth have complicated previous rigorous attempts to use them for classification.

The mathematical tedium Smith claims to have spared while devising the methods was not lost on tooth examination: Smith collected measurements and curvature data from about 2,000 teeth, scrutinizing dinosaur chops as a dentist would a root canal. Thousands of measurements ultimately boiled down into a data set of just under 300 usable teeth. The dataset is comprised of measurements of teeth from genera that are known with certainty; it thus forms a standard of comparison against which unknown teeth can be compared.

Smith then ran statistics on the database to correlate the shapes of unknown teeth with the most similar tooth of known origin. During a test of the methods, most of the time the model worked, correctly identifying known, and even similar-looking teeth as the correct genus.

"I've created the beginnings of a standard of comparison; a data set with teeth that we know where they came from, against which to compare isolated teeth. That's basically all I've done," Smith said.

He said that the model, although functional, isn't without its weaknesses. To properly correlate a tooth with a species, the species that the tooth belongs to must be represented in the data set; otherwise, the analysis will try to match the tooth with the species that most resembles the unknown.

Increasing the data set

"So now I'm working on making the method better and increasing the size of the data set," Smith adds.

Dinosaur identification is critical for paleontologists trying to accurately reconstruct the Mesozoic Period. Teeth can reveal dinosaur eating habits and biology if the tooth is associated with its rightful owner.

"We're taking a potential data set — that is, isolated teeth — that has the potential to be really powerful," Smith said, "Until now, the data have largely been overlooked but we're trying to make use of them. And it looks like it's working. Which is only really significant because everybody said it wouldn't."


Story Source:

The above story is based on materials provided by Washington University in St. Louis. Note: Materials may be edited for content and length.


Cite This Page:

Washington University in St. Louis. "Taking A Bite Out Of The Problem: Researchers Devise Dinosaur Classification Method." ScienceDaily. ScienceDaily, 10 November 2005. <www.sciencedaily.com/releases/2005/11/051110084537.htm>.
Washington University in St. Louis. (2005, November 10). Taking A Bite Out Of The Problem: Researchers Devise Dinosaur Classification Method. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2005/11/051110084537.htm
Washington University in St. Louis. "Taking A Bite Out Of The Problem: Researchers Devise Dinosaur Classification Method." ScienceDaily. www.sciencedaily.com/releases/2005/11/051110084537.htm (accessed September 19, 2014).

Share This



More Fossils & Ruins News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Egypt Denies Claims Oldest Pyramid Damaged in Restoration

Egypt Denies Claims Oldest Pyramid Damaged in Restoration

AFP (Sep. 17, 2014) Egypt's antiquities minister denied Tuesday claims that the Djoser pyramid, the country's first, had been damaged during restoration work by a company accused of being unqualified to do such work. Duration: 00:56 Video provided by AFP
Powered by NewsLook.com
King Richard III's Painful Cause Of Death Revealed

King Richard III's Painful Cause Of Death Revealed

Newsy (Sep. 17, 2014) King Richard III died in the Battle of Bosworth in 1485, and now researchers examining his skull think they know how. Video provided by Newsy
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Museum Traces Fragments of Star-Spangled Banner

Museum Traces Fragments of Star-Spangled Banner

AP (Sep. 12, 2014) As the Star-Spangled Banner celebrates its bicentennial, Smithsonian curators are still uncovering fragments of the original flag that inspired Francis Scott Key's poem. (Sept. 12) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins