Featured Research

from universities, journals, and other organizations

Microbes In Marine Sediments React To Temperature Changes

Date:
November 15, 2005
Source:
National Science Foundation
Summary:
Marine scientists from the University of Georgia have shown for the first time that temperature affects the biological activity of microbes that degrade organic carbon in marine sediments. Warming global temperatures could therefore cause shifts in the balance of organic carbon that is recycled into the atmosphere or buried in sediments that serve as reservoirs for the substance.

Sediment containing decomposed plants and animals washes downstream and collects in estuaries. Microbes in the sediment complete the final decomposition step by breaking down the organic carbon, and making it available for other organisms. Researchers recently discovered that the microbes' activity increases with rising temperature. Therefore, global climate change could potentially shift the balance of carbon recycling and storage.
Credit: Nicolle Rager-Fuller, National Science Foundation

Marine scientists from the University of Georgia have shown for the first time that temperature affects the biological activity of microbes that degrade organic carbon in marine sediments. Warming global temperatures could therefore cause shifts in the balance of organic carbon that is recycled into the atmosphere or buried in sediments that serve as reservoirs for the substance.

Related Articles


Relatively little has been known until now about how temperature affects this microbial process, which is responsible for the initial breakdown of complex organic matter in sediments, said oceanographer Samantha Joye of the University of Georgia and lead scientist on the study. "What we report was completely unexpected. Temperature short-circuits organic matter recycling," she said.

Joye and coworker, Nathaniel Weston, are publishing their results the week of Nov.14 in the Proceedings of the National Academy of Sciences.

"These surprising results show that temperature strongly affects organic matter breakdown and needs to be taken into account in understanding the role of sediments in the global carbon cycle," said Paul Kemp, program director in the National Science Foundation (NSF)'s Biological Oceanography Program, which supported the research along with NSF's Long-Term Ecological Research (LTER) Program.

The research was conducted at the Georgia Coastal Ecosystems LTER site located on the central Ga. coast and encompassing the estuaries, sounds and marshes surrounding Sapelo Island, Ga. There a buffer of barrier islands protect vast expanses of tidal salt marshes.

Scientists have long known that buried organic carbon in marine sediments plays a crucial role in many terrestrial and atmospheric processes. The number of microorganisms that feast upon this carbon is vast.

"The microbes responsible for organic matter degradation in sediments are often ignored," said Weston. "We were interested in opening the microbial 'black box' in sediments and clarifying the temperature controls on different microbial groups."

Weston and Joye studied sediment cores from Umbrella Creek near the mouth of the Satilla River on the Ga. coast. By sampling sediments at different times of the year, they found that temperature affected the processes that led to the breakdown of organic carbon. Microbes at work in sediments have different optimal temperature ranges, and thus operate at different rates, depending on temperature.

"Microbial processes involved in organic carbon breakdown are extremely sensitive to even small changes in temperature," said Joye. "These results suggest that global climate change may influence the efficiency of organic carbon recycling," impacting coastal ecosystems.

It's as yet unknown, said Joye, whether the temperature-driven changes documented for marine sediments in Ga., located in a temperate climate region, will apply to other geographic zones, such as tropical environments.

The research was also supported by the Georgia Sea Grant Program.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Microbes In Marine Sediments React To Temperature Changes." ScienceDaily. ScienceDaily, 15 November 2005. <www.sciencedaily.com/releases/2005/11/051115171043.htm>.
National Science Foundation. (2005, November 15). Microbes In Marine Sediments React To Temperature Changes. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2005/11/051115171043.htm
National Science Foundation. "Microbes In Marine Sediments React To Temperature Changes." ScienceDaily. www.sciencedaily.com/releases/2005/11/051115171043.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins