Featured Research

from universities, journals, and other organizations

Surprising Killer Of Southeastern Salt Marshes: Common Sea Snails

Date:
December 20, 2005
Source:
Brown University
Summary:
From South Carolina to Texas, salt marshes have experienced a massive die-off in recent years, threatening fisheries and leaving coastal areas vulnerable to flooding. The culprit, ecologists have long thought, is degraded soil. But new research, published in Science, points to the periwinkle -- cordgrass consuming sea snails -- as a major contributor to salt marsh loss.

Salt marsh assassin: Periwinkles, a saltwater snail that is ubiquitous along the U.S. shore, can reduce healthy salt marshes to mud flats in a matter of months. Ecologists had long thought salt-marsh die-offs were related to degraded soil.
Credit: Image courtesy of Brown University

Periwinkles, the spiral-shelled snails commonly found along rocky U.S. shorelines, play a primary role in the unprecedented disappearance of salt marsh in the southeastern states, according to new research published in Science.

Based on extensive field studies, the work challenges six decades of salt marsh science. Ecologists have long thought that stressed soil – too much salt, not enough oxygen – was the main killer of this critical marine habitat.

But Brian Silliman, a Brown University research fellow and a University of Florida assistant professor, said drought-stressed soils pave the way for predatory periwinkles that spread fungal disease as they graze on cordgrass.

“Snails can transform healthy marsh to mudflats in a matter of months,” said Silliman, lead author of the Science paper. “This finding represents a huge shift in the way we see salt marsh ecology. For years, scientists thought marsh die-off was simply a ‘bottom-up’ problem related solely to soil conditions. We found that the trouble also comes from the top down. Drought makes the marsh vulnerable, then the snails move in.”

Thousands of acres of salt marsh have disappeared from South Carolina to Texas since 2000, according to several scientific studies. In Louisiana alone, more than 100,000 acres of marsh were severely damaged between June 2000 and September 2001. This drastic decline poses a serious threat to the ecology and economy of the southeastern seaboard and the Gulf Coast. Salt marshes serve as nursery grounds that support commercial fisheries, protect coastline from storm-induced floods, and filter fresh water before it flows out to sea.

Mark Bertness, chair of the Department of Ecology and Evolutionary Biology at Brown and a co-author of the paper, said a better understanding of the causes of salt marsh loss will point to better ways to protect them.

“Loss of blue crabs and turtles, which prey on periwinkles, allows the snails to flourish,” Bertness said. “Protect the crabs and turtles and you can help save the marshes.”

Silliman came up with the periwinkle premise as a graduate student conducting field research in Virginia. Silliman found that removing snails from cordgrass, the dominant plant species in salt marshes, bumped up grass growth as much as 50 percent.

Silliman earned his Ph.D. at Brown and worked in the Bertness lab along with Johan van de Koppel, a former postdoctoral research associate now at the Netherlands Institute of Ecology. For more than two years, the trio tested Silliman’s top-down theory of marsh ecology along the Georgia, South Carolina and Louisiana coasts in conjunction with Lousiana State University researchers Lee Stanton and Irving Mendelssohn.

In 12 randomly selected die-off sites, the team surveyed periwinkle populations. They found the largest concentration of snails – as many as 2,000 per square meter – along dead-zone borders. To test the idea that the snails contribute to cordgrass death, they created dozens of deterrents – wire mesh enclosures measuring about one meter square. Enclosures were placed ahead of fronts of grass-grazing snails and monitored for more than a year.

The results: Inside the enclosures, snail-free cordgrass thrived. In fact, plant biomass increased more than threefold. Outside the cages, in 11 of the 12 sites, snail overgrazing converted healthy marsh to exposed mudflats in as little as three months. When snail density was high, destruction was more extensive.

Researchers also wanted to test the notion that increased soil salinity, brought on by drought, acts in concert with snails to kill marshland. So in one healthy site in Georgia, the team elevated soil salt concentrations in areas with and without snails. Sites were monitored for eight months.

In the experimental plots, increased salinity reduced grass growth by 45 percent while high salt levels, in combination with the presence of snails, reduced grass growth by 84 percent.

How do periwinkles contribute to marsh destruction? Silliman has shown that they kill the grass by slicing the stems during grazing, leaving plants vulnerable to harmful fungi. In a process called “fungal farming,” snails then consume this fungi living off injured grass.

“We’ve found a synergism between climate change and grazers,” Silliman explained. “Severe drought triggers formation of traveling fronts of grazing snails. Then there is runaway consumption, which leads to waves of marsh destruction. Given predicted increases in climate change-induced drought, these results highlight the potential for marsh die-off to be even more intense and extensive in the future.”

The findings, the authors argue, underscore the interplay of climate and consumers in the worldwide collapse of coastal systems. While an overabundance of snails may fuel southeastern salt marsh destruction, they point to other examples of habitat destruction that may be caused, in part, by a plethora of grazers: sea urchins wiping out California kelp beds, sea stars devastating Australian coral reefs, snow geese decimating marshes along the Artic Sea, bark beetles killing off Arizona pine forests.

Georgia Sea Grant, Louisiana Sea Grant, The Nature Conservancy, the National Science Foundation and the Schure-Beijerinck-Popping Fund supported the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Surprising Killer Of Southeastern Salt Marshes: Common Sea Snails." ScienceDaily. ScienceDaily, 20 December 2005. <www.sciencedaily.com/releases/2005/12/051219091308.htm>.
Brown University. (2005, December 20). Surprising Killer Of Southeastern Salt Marshes: Common Sea Snails. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2005/12/051219091308.htm
Brown University. "Surprising Killer Of Southeastern Salt Marshes: Common Sea Snails." ScienceDaily. www.sciencedaily.com/releases/2005/12/051219091308.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How to Make Single Serving Smoothies: Howdini Hacks

How to Make Single Serving Smoothies: Howdini Hacks

Howdini (July 24, 2014) Smoothies are a great way to get in lots of healthy ingredients, plus they taste great! Howdini has a trick for making the perfect single-size smoothie that will save you time on cleanup too! All you need is a blender and a mason jar. Video provided by Howdini
Powered by NewsLook.com
Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Tyrannosaur Pack-Hunting Theory Aided By New Footprints

Newsy (July 24, 2014) A new study claims a set of prehistoric T-Rex footprints supports the theory that the giant predators hunted in packs instead of alone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins