Featured Research

from universities, journals, and other organizations

Scientists Narrow The Time Limits For The Human And Chimpanzee Split

Date:
December 22, 2005
Source:
Penn State
Summary:
A research team proposes that the time when the most recent common ancestor of humans and their closest ape relatives -- the chimpanzees -- lived was between 5 and 7 million years ago -- a sharper focus than previous estimates of anywhere from 3 to 13 million years ago. Gene studies are needed because the interpretation of the earliest fossils of humans at the ape/human boundary are controversial and almost no fossils of chimpanzees have been discovered.

Our closest animal relative is not so far away. Chimpanzees diverged from humans only 5-7 million years ago according to a newly released study of gene sequences.
Credit: Anne Fischer, Max Plank-Institute for Evolutionary Anthropology

A team of researchers has proposed new limits on the time when the most recent common ancestor of humans and their closest ape relatives -- the chimpanzees -- lived. Scientists at Arizona State and Penn State Universities have placed the time of this split between 5 and 7 million years ago -- a sharper focus than that given by the previous collection of molecular and fossil studies, which have placed the divergence anywhere from 3 to 13 million years ago.

The scientists analyzed the largest data set yet of genes that code for proteins and also used an improved computational approach that they developed, which takes into account more of the variability -- or statistical error--in the data than any other previous study. Gene studies are needed to address this problem because the interpretation of the earliest fossils of humans at the ape/human boundary are controversial and because almost no fossils of chimpanzees have been discovered. "No study before has taken into account all of the error involved in estimating time with the molecular-clock method," said Sudhir Kumar, lead author on the report, which was published early online in the journal, Proceedings of the National Academy of Sciences. The team describes its new statistical technique as a "multifactor bootstrap-resampling approach."

Penn State evolutionary biologists Alan Walker and Blair Hedges also took part in the collaborative effort. The team examined 167 different gene sequence sets from humans, chimpanzees, macaques, and mice. "In order to reduce the variability in this time estimate as much as possible, we needed the largest amount of data available," said Kumar.

"There is considerable interest in knowing when we diverged from our closest relative among animal species," said Kumar, who is director of the Center for Evolutionary Functional Genomics in the Biodesign Institute at Arizona State University. "This divergence time also has considerable importance because it is used to establish how fast genes mutate in humans and to date the historical spread of our species around the globe." Kumar was assisted at Arizona State by Research Associate Alan Filipski and graduate student Vinod Swarna.

The scientists estimated the time of divergence between species by studying the sequential arrangement of nucleotides that make up the chain-like DNA molecules of each species. The number of mutations in the DNA sequence of a species, compared with other species, is a gauge of its rate of evolutionary change. By calibrating this rate with the known time of divergence of a species on another branch of the tree-like diagram that shows relationships among species, scientists can estimate the time when the species they are studying evolved. In this case, the calibration time the scientists used was the split of Old World monkeys -- including baboons, macaques, and others -- from the branch of the phylogenetic tree that led to humans and apes, which fossil studies have shown is at least 24 million years ago. Using this calibration time, the team estimated that the human-chimp divergence occurred at least 5 million years ago, proportionally about one-fifth of the calibration time.

This time is consistent with the findings of several research groups that have used the molecular-clock method to estimate the split of humans and chimpanzees since the first attempt in 1967. But this is only a minimum estimate, because it was based on a minimum calibration time. To obtain a maximum limit on the human-chimp divergence, the team used as a calibration point the maximum estimate, based on fossil studies, of the divergence of Old-World monkeys and the branch leading to humans -- 35 million years ago. Calculations using this date yielded a time for the human-chimp split of approximately 7 million years ago, which again was proportionally about one-fifth of the calibration time.

"We can conclude that humans and chimpanzees probably last shared a common ancestor between five and seven million years ago," says Blair Hedges, professor of biology at Penn State. "Although this conclusion does not exclude younger or older dates as being possible, it says they are less likely to be correct." Hedges, who also is an astrobiologist, adds that "knowing the timescale of human evolution, and how we changed through time in relation to our environment, could provide valuable clues for understanding -- in a more general sense -- the evolution of intelligent life."

Walker, a paleoanthropologist and Evan Pugh Professor of Biological Anthropology and Biology at Penn State, has discovered and studied fossil hominids and other primate species that pertain to the question of the human-chimp divergence. "While this research does not pinpoint the precise time of the split, it tells us that proportional differences on branches in family trees should be considered when proposing new times. For example, we now know that a 10-to-12-million-year human-chimp split would infer a divergence of Old World monkeys from our lineage that is too old (50-to-60-million years ago) to reconcile with the current fossil record of primates," says Walker.

What then is the next step? Although some additional improvement is possible by including more genes and more species, "the greatest opportunity now for further narrowing this estimate of 5-to-7-million years will be the discovery of new fossils and the improvement in geologic dating of existing fossils," says Walker.

###

Financial support for this research was provided by the National Institutes of Health and the National Aeronautics and Space Administration Astrobiology Institute.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Scientists Narrow The Time Limits For The Human And Chimpanzee Split." ScienceDaily. ScienceDaily, 22 December 2005. <www.sciencedaily.com/releases/2005/12/051222083255.htm>.
Penn State. (2005, December 22). Scientists Narrow The Time Limits For The Human And Chimpanzee Split. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2005/12/051222083255.htm
Penn State. "Scientists Narrow The Time Limits For The Human And Chimpanzee Split." ScienceDaily. www.sciencedaily.com/releases/2005/12/051222083255.htm (accessed October 1, 2014).

Share This



More Fossils & Ruins News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Battle of New Orleans Cannon Gets New Carriage

Battle of New Orleans Cannon Gets New Carriage

AP (Sep. 30, 2014) A Spanish cannon used in the Battle of New Orleans and weighing nearly 3 tons was lowered Tuesday by pulleys, chains and muscle onto a new gun carriage like one that might have held it once aboard a navy ship. (Sept. 30) Video provided by AP
Powered by NewsLook.com
2,000 Year Old Pre-Inca Cloak on Display in Lima

2,000 Year Old Pre-Inca Cloak on Display in Lima

AFP (Sep. 27, 2014) A 2,000 year-old Pre-Inca cloak that is believed to represent an agricultural calendar of the Paracas culture is on display in Lima. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
Original Mozart Sonata Manuscript Found in Budapest

Original Mozart Sonata Manuscript Found in Budapest

AFP (Sep. 26, 2014) Considered lost for over two centuries, the original manuscript of one of the most famous works of Mozart's Sonata in A major has been uncovered in a library in Budapest. Duration: 01:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins