Featured Research

from universities, journals, and other organizations

From Mirror To Mist: Cracking The Secret Of Fracture Instabilities

Date:
January 23, 2006
Source:
Max Planck Society
Summary:
When materials break and cracks propagate, bonds between atoms are broken, generating two new material surfaces. Experiments have shown that cracks moving at low speeds create atomically flat mirror-like surfaces, whereas cracks at higher speeds leave increasingly rough fracture surfaces.

Dynamic instability occurring on the crack tip. As the crack velocity increases, its forward motion becomes more and more unstable: the crack changes direction and leaves behind an increasingly irregular surface.
Credit: Image : M. Buehler/Massachusetts Institute of Technology

When materials break and cracks propagate, bonds between atoms are broken, generating two new material surfaces. Experiments have shown that cracks moving at low speeds create atomically flat mirror-like surfaces, whereas cracks at higher speeds leave increasingly rough fracture surfaces.

Scientists from the Max Planck Institute for Metals Research in Stuttgart, Germany and the Massachusetts Institute of Technology in Cambridge, Massachusetts have simulated the atomistic details of how cracks propagate in brittle materials and gained significant insight into the physics of dynamical fracture instabilities. They have shown quantitatively that fracture instabilities are controlled by the properties of materials under extreme deformation conditions near a moving crack tip (Nature, January 19, 2006).

Their study further shows that in rubber-like materials that stiffen with strain, cracks can move at speeds faster than the Rayleigh-wave speed while creating mirror-like surfaces. These findings may have significant implications on the understanding of fracture in different materials at different scales, from nano-materials to airplanes, buildings or even earthquake dynamics.

Scientists have been trying for decades to describe how cracks spread in materials. Experiments have shown that crack propagation in brittle materials involves a transition from mirror-smooth fracture surfaces at low crack speeds to increasingly rough and irregular surfaces at higher speeds (see images 1 and 2). This instability of dynamic fracture can be seen in a wide variety of brittle materials including ceramics, glasses, polymers and semiconductors.

Now, Markus Buehler of the Massachusetts Institute of Technology and Huajian Gao of the Max Planck Institute for Metals Research have performed careful, quantitative studies of dynamic fracture instabilities based on large-scale molecular dynamics simulations.

"Our atomistic simulations show that the key to understand the experimental observations reported in the literature is to consider the material behaviour close to the breaking of bonds." Most existing theories of fracture are based on small material deformation, assuming a linear relationship between stress and strain. However, the relation between stress and strain in real solids is strongly nonlinear due to large deformation near a moving crack tip. This fact stems from the details of atomistic or molecular interactions in materials.

Based on their modelling work, they have proposed a simple model that is an extension of existing theories, referred to as the modified instability model. "Our new model reduces to existing theories in limiting cases, but allows a unified treatment of the instability problem applicable to a much wider range of materials," says Markus Buehler. In materials like ceramics, metals or silicon that strongly soften close to bond breaking, the hyperelastic effect leads to a reduction in local wave speed, which results in decreased energy transport to the crack tip, and reduced instability speeds.

The scientists have made another surprising observation. "We find that elastically stiffening rubber-like materials can dramatically change the instability dynamics of cracks," says Markus Buehler. Rubber is rather soft at small deformation, and becomes harder as the stretch is increased. "In elastically stiffening materials, stable crack motion at super-Rayleigh crack speeds is possible." These results are in clear contrast to any existing theories, in which the speed of elastic waves is considered to be the limiting speed of fracture. Recent experimental results of fracture experiments in rubber have also shown cracks exceeding the shear wave speed.

The main contribution described in the paper is the development of a more complete understanding of dynamic fracture, leading to significant insight into the physics of dynamical fracture instabilities. Their findings could have wide impact in many scientific and engineering disciplines. This work may help to improve the understanding of how materials break at different scales, ranging from nanomaterials to buildings, as well as the understanding of earthquakes.


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "From Mirror To Mist: Cracking The Secret Of Fracture Instabilities." ScienceDaily. ScienceDaily, 23 January 2006. <www.sciencedaily.com/releases/2006/01/060123165424.htm>.
Max Planck Society. (2006, January 23). From Mirror To Mist: Cracking The Secret Of Fracture Instabilities. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2006/01/060123165424.htm
Max Planck Society. "From Mirror To Mist: Cracking The Secret Of Fracture Instabilities." ScienceDaily. www.sciencedaily.com/releases/2006/01/060123165424.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is It a Plane? No, It's a Hoverbike

Is It a Plane? No, It's a Hoverbike

Reuters - Business Video Online (Aug. 22, 2014) UK-based Malloy Aeronautics is preparing to test a manned quadcopter capable of out-manouvering a helicopter and presenting a new paradigm for aerial vehicles. A 1/3-sized scale model is already gaining popularity with drone enthusiasts around the world, with the full-sized manned model expected to take flight in the near future. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Coal Gas Boom in China Holds Climate Risks

Coal Gas Boom in China Holds Climate Risks

AP (Aug. 22, 2014) China's energy revolution could do more harm than good for the environment, despite the country's commitment to reducing pollution and curbing its carbon emissions. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins