Featured Research

from universities, journals, and other organizations

DNA-wrapped Carbon Nanotubes Serve As Sensors In Living Cells

Date:
January 27, 2006
Source:
University of Illinois at Urbana-Champaign
Summary:
Single-walled carbon nanotubes wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light, report researchers at the University of Illinois at Urbana-Champaign. Their discovery opens the door to new types of optical sensors and biomarkers that exploit the unique properties of nanoparticles in living systems.

Michael Strano, a professor of chemical and biomolecular engineering, and his research team's discovery opens the door to new types of optical sensors and biomarkers that exploit the unique properties of nanoparticles in living systems.
Credit: Image courtesy of University of Illinois at Urbana-Champaign

Single-walled carbon nanotubes wrapped with DNA can be placed inside living cells and detect trace amounts of harmful contaminants using near infrared light, report researchers at the University of Illinois at Urbana-Champaign. Their discovery opens the door to new types of optical sensors and biomarkers that exploit the unique properties of nanoparticles in living systems.

Related Articles


"This is the first nanotube-based sensor that can detect analytes at the subcellular level," said Michael Strano, a professor of chemical and biomolecular engineering at Illinois and corresponding author of a paper to appear in the Jan. 27 issue of the journal Science. "We also show for the first time that a subtle rearrangement of an adsorbed biomolecule can be directly detected by a carbon nanotube."

At the heart of the new detection system is the transition of DNA secondary structure from the native, right-handed "B" form to the alternate, left-handed "Z" form.

"We found that the thermodynamics that drive the switching back and forth between these two forms of DNA structure would modulate the electronic structure and optical emission of the carbon nanotube," said Strano, who is also a researcher at the Beckman Institute for Advanced Science and Technology and at the university's Micro and Nanotechnology Laboratory.

To make their sensors, the researchers begin by wrapping a piece of double-stranded DNA around the surface of a single-walled carbon nanotube, in much the same fashion as a telephone cord wraps around a pencil. The DNA starts out wrapping around the nanotube with a certain shape that is defined by the negative charges along its backbone.

When the DNA is exposed to ions of certain atoms -- such as calcium, mercury and sodium -- the negative charges become neutralized and the DNA changes shape in a similar manner to its natural shape-shift from the B form to Z form. This reduces the surface area covered by the DNA, perturbing the electronic structure and shifting the nanotube's natural, near infrared fluorescence to a lower energy.

"The change in emission energy indicates how many ions bind to the DNA," said graduate student Daniel Heller, lead author of the Science paper. "Removing the ions will return the emission energy to its initial value and flip the DNA back to the starting form, making the process reversible and reusable."

The researchers demonstrated the viability of their measurement technique by detecting low concentrations of mercury ions in whole blood, opaque solutions, and living mammalian cells and tissues -- examples where optical sensing is usually poor or ineffective. Because the signal is in the near infrared, a property unique to only a handful of materials, it is not obscured by the natural fluorescence of polymers and living tissues.

"The nanotube surface acts as the sensor by detecting the shape change of the DNA as it responds to the presence of target ions," Heller said.

###

Co-authors of the paper with Strano and Heller are graduate student Esther Jeng and undergraduate students Tsun-Kwan Yeung, Brittany Martinez, Anthonie Moll and Joseph Gastala.

The work was funded by the National Science Foundation.



Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "DNA-wrapped Carbon Nanotubes Serve As Sensors In Living Cells." ScienceDaily. ScienceDaily, 27 January 2006. <www.sciencedaily.com/releases/2006/01/060126195041.htm>.
University of Illinois at Urbana-Champaign. (2006, January 27). DNA-wrapped Carbon Nanotubes Serve As Sensors In Living Cells. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2006/01/060126195041.htm
University of Illinois at Urbana-Champaign. "DNA-wrapped Carbon Nanotubes Serve As Sensors In Living Cells." ScienceDaily. www.sciencedaily.com/releases/2006/01/060126195041.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins