Featured Research

from universities, journals, and other organizations

Intracellular Observation Of RNA Metabolism Will Help Identify Disease-associated RNAs

Date:
January 30, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
For the first time, researchers can now peer inside intact cells to not only identify RNA-binding proteins, but also observe -- in real-time -- the intricate activities of these special molecules that make them key players in managing some of the cell's most basic functions. Researchers at the University of Pennsylvania School of Medicine who developed the new technology see this advance as one of the next logical steps in genomics research.

For the first time, researchers can now peer inside intact cells to not only identify RNA-binding proteins, but also observe -- in real-time -- the intricate activities of these special molecules that make them key players in managing some of the cell's most basic functions. Researchers at the University of Pennsylvania School of Medicine who developed the new technology see this advance as one of the next logical steps in genomics research. Senior author James Eberwine, PhD, Professor of Pharmacology at Penn, and colleagues published their research this week in the Proceedings of the National Academy of Sciences.

"Now we have a workable system to understand all aspects of RNA metabolism in a cell," say Eberwine. "For the first time, we can study how manipulation of cellular physiology, such as administering a drug, changes RNA-binding protein and RNA interactions. This technology allows us to see that in real time in real cells."

RNA is the genetic material that programs cells to make proteins from DNA's blueprint and specifies which proteins should be made. There are many types of RNA in the cells of mammals, such as transfer RNA, ribosomal RNA, and messenger RNA -- each with a specific purpose in making and manipulating proteins.

The workhorses of the cell, RNA-binding proteins regulate every aspect of RNA function. Indeed, RNA is transported from one site to another inside the cell by RNA-binding proteins; RNA is translated into protein with the help of RNA-binding proteins, and RNA-binding proteins degrade used RNA. "They're really the master regulators of expression in the cell," says Eberwine.

Using whole neurons from rodents, the researchers were able to identify RNA interactions in live cells. In collaboration with Ϋlo Langel from Stockholm University, the Penn investigators devised a many-talented molecule that does not get broken down by enzymes once inside a live cell. One end of the molecule, called a peptide nucleic acid (PNA), has a cell-penetrating peptide called transportan 10 to first get the PNA through the cell membrane. Once in the cell, the PNA binds to a specific target messenger RNA (mRNA). There is also a compound on the molecule that can be activated by light and will cross-link the PNA to whatever protein is nearby. The researchers isolated an array of proteins from the complex of the PNA, the targeted mRNAs, and associated RNA-binding proteins. The cells are then broken apart and the proteins that interact with the mRNA are identified with a mass spectrometer.

With their system, the researchers are trying to identify RNA-binding proteins that bind RNAs of interest -- such as those involved in the targeting, degradation, and translation of RNAs into proteins. Once identified, the Eberwine team uses another technology they developed to find the other RNA cargos that bind to that RNA-binding protein. These are other RNAs that likely co-regulate RNAs associated with disease.

The research was supported by grants from the National Institutes of Health, the Swedish Science Foundation, and the European Community. Study coauthors are Jennifer Zielinski, Tiina Peritz, Jeanine Jochems, Theresa Kannanayakal, and Kevin Miyashiro, from Penn, and Kalle Kilk, Emilia Eiriksdσttir, and Ϋlo Langel from Stockholm University, Sweden.

Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Intracellular Observation Of RNA Metabolism Will Help Identify Disease-associated RNAs." ScienceDaily. ScienceDaily, 30 January 2006. <www.sciencedaily.com/releases/2006/01/060130032101.htm>.
University of Pennsylvania School of Medicine. (2006, January 30). Intracellular Observation Of RNA Metabolism Will Help Identify Disease-associated RNAs. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/01/060130032101.htm
University of Pennsylvania School of Medicine. "Intracellular Observation Of RNA Metabolism Will Help Identify Disease-associated RNAs." ScienceDaily. www.sciencedaily.com/releases/2006/01/060130032101.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins