Featured Research

from universities, journals, and other organizations

Study Explains Unexpected Conductivity Of Nanoscale Silicon

Date:
February 9, 2006
Source:
University of Wisconsin-Madison
Summary:
A team of UW-Madison engineers demonstrated that when the surface of nanoscale silicon is specially cleaned, the surface itself facilitates current flow in thin layers that ordinarily won't conduct -- a potentially significant finding for nanotechnology applications.

With her face reflected in a small glass port, physics graduate student Pengpeng Zhang peers into a scanning tunneling microscope that uses electrical current to measure atomic-sized features on the surface of nanoscale silicon membranes. Zhang is a research assistant working in the lab of materials science and engineering professor Max Lagally. She is part of the team that demonstrated how nanoscale silicone surfaces can conduct electricity -- a surprising finding that will have implications for nanotechnology development.
Credit: Photo : Jeff Miller

When graduate student Pengpeng Zhang successfully imaged a piece of silicon just 10 nanometers-or a millionth of a centimeter-in thickness, she and her University of Wisconsin-Madison co-researchers were puzzled. According to established thinking, the feat should be impossible because her microscopy method required samples that conduct electricity.

"After she did it, we realized, 'Hey, this silicon layer is really thin-it's much thinner than what people normally use,'" says UW-Madison physicist Mark Eriksson. "In fact, it's thin enough that it should be very hard to run a current through it. So we began asking, 'Why is this working?'"

A team led by College of Engineering professors Paul Evans, Irena Knezevic and Max Lagally and physics professor Eriksson has now answered that question. Writing in the Feb. 9 issue of the journal Nature, they have shown that when the surface of nanoscale silicon is specially cleaned, the surface itself facilitates current flow in thin layers that ordinarily won't conduct. In fact, conductivity at the nanoscale is completely independent of the added impurities, or dopants, that usually control silicon's electrical properties, the team reports.

"What this tells us is that if you're building nanostructures, the surface is really important," says Evans. "If you make silicon half as thick, you would expect it to conduct half as well. But it turns out that silicon conducts much worse than that if the surface is poorly prepared and much better than that if the surface is well prepared."

The results also mean that the powerful concepts, methods and instruments of silicon electronics honed by scientists and the semiconductor industry over decades - many of which require conductive samples, like the scanning tunneling microscopy method employed by Zhang - can also be used to explore the nanoworld.

"We're working at the crossover between silicon electronics and nanoelectronics," says Evans. "This material is the same size as nanodevices like silicon nanowires and quantum dots. But now we can use the tools from silicon electronics we already have to probe it."

The team studied silicon-on-insulator substrates, in which a half-millimeter-thick silicon wafer is covered by a much thinner layer of insulating silicon oxide. Another silicon layer, in turn, tops the oxide layer. In the UW-Madison investigation, this uppermost layer was a "nanomembrane" just 10 nanometers thick. Silicon nanomembranes could one day become the platform for future high-speed electronics and a host of novel sensor technologies, says Lagally. But like all silicon, they naturally develop another unwanted layer of oxide on top when exposed to air, resulting in an oxide-silicon-oxide structure. And the usual means to drive off the top oxide-by heating the material to more than 1,200 degrees Celsius-causes nanomembranes to ball up.

What Zhang originally developed was a method to remove the top oxide without causing this damage. Under ultra-high vacuum, she slowly deposited several additional silicon or germanium layers, each just one atom thick, at 700 degrees C.

Scanning tunneling microscopy soon revealed that this process somehow allowed the nanomembrane to conduct electricity. To find out why, the team analyzed the resistance-the inverse of conductivity-of silicon layers ranging from to 200 to 15 nanometers in thickness. More importantly, they compared silicon's resistance when sandwiched between two oxide layers-the usual case-and when cleaned of the top oxide and exposed to vacuum through Zhang's method. Knezevic then created a model predicting resistance as a function of layer thickness in both situations.

Knezevic's model indicates that in layers thinner than 100 nanometers, the properties of silicon itself become irrelevant: what matters is the surface. Even in relatively thick layers of 200 nanometers, silicon cleaned of the top oxide was at least 10 times more conductive than silicon sandwiched between oxide layers. And as layer thickness shrunk, this difference eventually grew to six orders of magnitude.

The team has proposed that cleaning promotes conductivity by creating new electronic states on the silicon surface where electrons can reside. States are to electrons what parking spaces are to cars. In silicon sandwiched between oxide layers, every parking space-indeed, the entire space of the lot-is jammed. With no empty spaces to move into, electrons are trapped in position and current can't flow.

When new states open up on the surface due to cleaning, it's as if another level of parking spaces has been added, and a small number of electrons jump to the new spots. What they leave behind in the bulk silicon are holes-empty spaces that other electrons can fill. As electrons move into these holes, additional holes are produced. In this way, the traffic jam breaks up and current begins to flow-all because of the surface.

"It's an interesting interplay," says Eriksson. "You clean the surface so you can image it. But then the surface ends up enabling conductivity in the entire silicon layer."



Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Study Explains Unexpected Conductivity Of Nanoscale Silicon." ScienceDaily. ScienceDaily, 9 February 2006. <www.sciencedaily.com/releases/2006/02/060208184658.htm>.
University of Wisconsin-Madison. (2006, February 9). Study Explains Unexpected Conductivity Of Nanoscale Silicon. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2006/02/060208184658.htm
University of Wisconsin-Madison. "Study Explains Unexpected Conductivity Of Nanoscale Silicon." ScienceDaily. www.sciencedaily.com/releases/2006/02/060208184658.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins