Featured Research

from universities, journals, and other organizations

Clock Molecule's Sensitivity To Lithium Sheds Light On Bipolar Disorder

Date:
February 21, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine discovered that a key receptor protein is a critical component of the internal molecular clock in mammals. What's more, this molecule -- called Rev-erb -- is sensitive to lithium and may help shed light on circadian rhythm disorders, including bipolar disorder. The findings also provide insight into clock-controlled aspects of metabolism.

The GSK3-Rev-erb pathway that controls the internal clock. Rev-erb is a key component of the clock that exists in most cells of the body. It inhibits the clock gene Bmal1, which in turn increases Rev-erb, such that within a normal 24-hour circadian cycle the levels of Rev-erb and Bmal oscillate within the cell. Lithium inhibits GSK3, which is an enzyme known to regulate circadian rhythm by a previously unknown mechanism. The present study shows that GSK3 normally blocks destruction of the Rev-erb protein. By inhibiting GSK3, lithium tags Rev-erb for destruction, which leads to the activation of clock genes such as bmal1 and gets the clock going.
Credit: Image Mitch Lazar, MD, PhD, University of Pennsylania School of Medicine

Researchers at the University of Pennsylvania School of Medicine discovered that a key receptor protein is a critical component of the internal molecular clock in mammals. What's more, this molecule -- called Rev-erb -- is sensitive to lithium and may help shed light on circadian rhythm disorders, including bipolar disorder. The findings, which also provide insight into clock-controlled aspects of metabolism, are reported in this week's issue of Science.

"We're interested in the internal control of metabolism because feeding behavior is on a daily cycle, and hormonal activities that regulate this are circadian," says senior author Mitch Lazar, MD, PhD, Director of the Institute for Diabetes, Obesity, and Metabolism at Penn. "Many studies, including those here at Penn, suggest a relationship between the human circadian clock and metabolism. Proteins are the gears of the clock, and not much is known about what regulates protein levels within the cell."

Rev-erb was known to be a key component of the clock that exists in most cells of the body. Rev-erb inhibits clock genes called bmal and clock, but within a normal 24-hour circadian cycle the Rev-erb protein is destroyed within the cell, allowing bmal and other clock proteins to increase. Among other actions, these clock genes cause Rev-erb to increase, which again inhibits bmal and clock. "The time it takes for that to happen determines the length of the cycle -- roughly 24 hours -- and keeps the clock going," explains Lazar.

Penn colleague and coauthor Peter Klein, MD, PhD, Assistant Professor of Medicine, discovered a few years ago that the drug lithium, used to treat biopolar illness, inhibits GSK3, an enzyme known to regulate circadian rhythm in several animal species. In the present study, the researchers showed that the destruction of Rev-erb, a receptor shown previously by Lazar and others to play a role in maintaining normal metabolism, is prevented by GSK3 in mouse and human cells. "It's like pulling a pin out of the gears of the clock, to allow them to turn in a synchronized manner," says Lazar.

Lithium blocks this action of GSK3, tagging Rev-erb for destruction, which leads to activation of clock genes such as bmal1. "We suggest that just as our cells in the incubator need to have their internal clocks reset, maybe this is what happens in some people with circadian disorders," says Lazar. "One effect of lithium may be to reset clocks that become stuck when Rev-erb levels build up."

These results point to Rev-erb as a lithium-sensitive component of the human clock and therefore a possible target for developing new circadian-disorder drugs. Some patients taking lithium have developed kidney toxicity and other problems. Lazar surmises that new treatments that lead to the destruction of Rev-erb would have the potential of providing another point of entry into the circadian pathway.

Noting that Rev-erb is present in metabolically active tissues, Lazar and his team at the Institute for Diabetes, Obesity, and Metabolism are also interested in the relationship between the control of the circadian clock and metabolic diseases such as obesity and diabetes. "There is a dynamic interplay between circadian rhythms and metabolism," Lazar says. "You don't eat while you are sleeping, and the body needs to take this into account."

Study co-authors are Lei Yin and Jing Wang, both from Penn. The research was funded by the National Institute of Diabetes & Digestive & Kidney Diseases and the National Institute of Mental Health.



Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Clock Molecule's Sensitivity To Lithium Sheds Light On Bipolar Disorder." ScienceDaily. ScienceDaily, 21 February 2006. <www.sciencedaily.com/releases/2006/02/060220101609.htm>.
University of Pennsylvania School of Medicine. (2006, February 21). Clock Molecule's Sensitivity To Lithium Sheds Light On Bipolar Disorder. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2006/02/060220101609.htm
University of Pennsylvania School of Medicine. "Clock Molecule's Sensitivity To Lithium Sheds Light On Bipolar Disorder." ScienceDaily. www.sciencedaily.com/releases/2006/02/060220101609.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins