Featured Research

from universities, journals, and other organizations

Technique Makes It Easier To See Mouse Embryo In All Its Glory

Date:
April 29, 2006
Source:
Public Library of Science
Summary:
A fast, high-resolution, 3D mouse embryo visualization technique developed by collaborators at the University of Texas Health Science Center at San Antonio and the University of Utah will revolutionize the way birth defects and cancer genes are studied in animal models. That's the prediction of the researchers in an article to be published online in PLoS Genetics on April 28, a peer-reviewed, open-access journal from the Public Library of Science.

Three-dimensional microCT-based virtual histology allows full assessment of an E12.5 mouse embryo.
Credit: Image created by David Weinstein (Visual Influence), Charles Keller, and Ali Bahadur (UTHSCSA)

A fast, high-resolution, 3D mouse embryo visualization technique developed by collaborators at the University of Texas Health Science Center at San Antonio and the University of Utah will revolutionize the way birth defects and cancer genes are studied in animal models. That's the prediction of the researchers in an article to be published online in PLoS Genetics on April 28, a peer-reviewed, open-access journal from the Public Library of Science.

The new tool, called Virtual Histology, has already boosted the researchers' ability to study the mouse embryo and more rapidly focus on abnormalities of development, including childhood cancers. Birth defects are diagnosed in 150,000 babies in the U.S. annually. Suspected causes are genetic abnormalities, environmental insults, and drug and chemical exposures.

Charles Keller, M.D., assistant professor at the Children's Cancer Research Institute (CCRI) at The University of Texas Health Science Center at San Antonio, is studying ways to improve treatment of two types of childhood cancers '" brain tumors called medulloblastomas and muscle tumors called alveolar rhabdomyosarcomas. Dr. Keller, a pediatric oncologist, moved to the CCRI from the University of Utah in 2005, and continues his collaborations with engineers and computer scientists at Utah's Scientific Computing and Imaging Institute. Dr. Keller routinely works with mouse embryos in trying to understand the role of developmentally regulated genes in the types of cancers that children sometimes acquire. The study of genetically modified embryos and their birth defects is usually a slow and laborious process, but Dr. Keller and colleagues have found a way to make the analysis much faster '" and more accurate.

Traditional histology involves embedding embryos in wax, thinly slicing the wax and delicately placing it on slides, staining the sections and viewing slides under the microscope, then mentally reconstructing the three-dimensional aspects of the embryo to reveal pertinent biological information. Under the new method, the intact embryo is stained to distinguish tissues (organs, developing bone and soft tissue) and is digitally scanned at high resolution using x-ray computed tomography. Computational methods are applied to analyze embryo organs for defects.

"From the moment of conception, the mice under study are genetically programmed to develop tumors," Dr. Keller said. "Intentional disruption of specific genes can cause birth defects in the same mice, which teaches us important lessons about how these genes function in both cancer and development." He noted that disruption of a cancer-promoting gene, Pax 3:Fkhr, causes a bone of the nose not to form, for example.

Beyond his own research into the function of cancer-causing genes, Dr. Keller suggests that this technique may have a role in making our households safer. "We make certain assumptions that our toothpaste, artificial sweeteners, pain relievers and household cleaning chemicals are safe for pregnant mothers," he said. "The EPA (U.S. Environmental Protection Agency) and FDA (U.S. Food and Drug Administration) mandate that chemical and drug companies perform tests of reproductive safety, but how complete are these studies? Historically, these studies have been semi-quantitative or subjective. However, microCT-based Virtual Histology allows chemical and drug companies to conduct these studies in a much more quantitative way '" improving upon the safety of the products we find in our homes," Dr. Keller said.

Dr. Keller and a colleague, Michael Beeuwsaert, founded a company called Numira Biosciences (www.numirabio.com) to patent and commercialize discoveries from Dr. Keller's laboratory. Numira plans to make Virtual Histology available to researchers through the sale of kits and imaging services. "Virtual Histology represents a vast improvement in resolution, time and expense compared to current methods and approaches for studying developmental defects in animal models," Beeuwsaert said.

Dr. Keller said Virtual Histology is a timely breakthrough, given the National Institutes of Health's recently announced goal to delete, or "knock out," every one of the 25,000 genes in the mouse genome. "These are exciting times," he said. "Advancements in imaging instrumentation and software tools are helping us understand the genetic basis of mammalian development in unprecedented clarity. It may seem hard to imagine, but putting embryology tutorials on an X-Box for eighth-grade biology students to study the genetic basis of development is already in reach."


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Cite This Page:

Public Library of Science. "Technique Makes It Easier To See Mouse Embryo In All Its Glory." ScienceDaily. ScienceDaily, 29 April 2006. <www.sciencedaily.com/releases/2006/04/060429125148.htm>.
Public Library of Science. (2006, April 29). Technique Makes It Easier To See Mouse Embryo In All Its Glory. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/04/060429125148.htm
Public Library of Science. "Technique Makes It Easier To See Mouse Embryo In All Its Glory." ScienceDaily. www.sciencedaily.com/releases/2006/04/060429125148.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins