Featured Research

from universities, journals, and other organizations

Mechanism For Neurodenegerative Diseases Linked To Transport Proteins

Date:
June 11, 2006
Source:
University of Illinois at Chicago
Summary:
Hampering the transport of proteins within cells may underlie several adult-onset neurodegenerative diseases, such as Huntington's, ALS and Kennedy disease. Understanding how this cell transport is blocked in these diseases may offer targets for future therapy.

Hampering the transport of proteins within cells may underlie several adult-onset neurodegenerative diseases, such as Huntington's, ALS and Kennedy disease. Understanding how this cell transport is blocked in these diseases may offer targets for future therapy.

In a new study published online June 4 in Nature Neuroscience, researchers from the University of Illinois at Chicago College of Medicine showed how a chemical pathway that is obstructed in Kennedy disease interferes with a cellular distribution system called "fast axonal transport" that moves proteins from where they are synthesized to where they are needed in the cell.

This transport system is critical in neurons because these cells can be as much as three feet long, says Dr. Scott Brady, professor and head of anatomy and cell biology at UIC.

"A breakdown in fast axonal transport would selectively kill neurons because neurons are especially dependent on the transport system," Brady said.

Kennedy disease is also known as spinal and bulbar muscular atrophy, or SBMA. Like the better-known ALS and Huntington's, it is a rare but devastating disease, affecting one in 40,000 people, usually between the ages of 30 and 50. Huntington's strikes about four times as many.

Neurodegenerative diseases like SBMA are caused by the lengthening of part of a gene that encodes repetitions of the amino acid glutamine in the protein. Although different genes are affected, all of the polyglutamine-expansion or "polyQ" diseases are characterized by symptoms that begin in middle age and by the loss of certain types of neurons through a pattern in which the neuron's terminals die before the cell body. PolyQ genes are expressed in many types of cells, but only neurons are affected.

Earlier studies had linked specific neurodegenerative diseases to mutations in proteins involved in intracellular transport. This led researchers to wonder if the deranged polyQ proteins inhibit fast axonal transport in several diseases, including SBMA, in which a mutation in the receptor for testosterone leads to the loss of motor neurons. In the new study, Brady and his co-workers were able to show that polyQ-AR, the mutated protein in SBMA, caused inhibition of fast axon transport by activating an enzyme called JNK that can inhibit these transport proteins.

Brady said this is the first proposed mechanism for polyQ diseases that explains why only nerve cells die and why the terminals die before the cell body. The link to the activation of the JNK enzyme suggests a new therapeutic target that might limit, delay or perhaps prevent progressive neurodegeneration, the researchers conclude.

Gerardo Morfini, Gustavo Pigino, Yimei You and Sarah Pollema of UIC and Györgyi Szebenyi of the University of Texas Southwestern Medical Center are co-authors of the study, which was supported the National Institute of Neurological Disorders and Stroke and the ALS Association.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Mechanism For Neurodenegerative Diseases Linked To Transport Proteins." ScienceDaily. ScienceDaily, 11 June 2006. <www.sciencedaily.com/releases/2006/06/060611101040.htm>.
University of Illinois at Chicago. (2006, June 11). Mechanism For Neurodenegerative Diseases Linked To Transport Proteins. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2006/06/060611101040.htm
University of Illinois at Chicago. "Mechanism For Neurodenegerative Diseases Linked To Transport Proteins." ScienceDaily. www.sciencedaily.com/releases/2006/06/060611101040.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) — Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) — If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) — A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins