Featured Research

from universities, journals, and other organizations

Researchers Offer Clues To How Leaves Patterns Are Formed

Date:
June 15, 2006
Source:
University of Alberta
Summary:
Pick up a leaf and it is hard not to notice the pattern made by the veins. For years, biologists, mathematicians and even poets and philosophers have tried to decipher the rules and regulations behind those varied designs and now new research published in part at the University of Alberta offers a big clue to how those patterns are formed.

Pick up a leaf and it is hard not to notice the pattern made by the veins. For years, biologists, mathematicians and even poets and philosophers have tried to decipher the rules and regulations behind those varied designs and now new research published in part at the University of Alberta offers a big clue to how those patterns are formed.

"For years people have been trying to understand this beautiful formation," said Dr. Enrico Scarpella, from the U of A's Department of Biological Sciences. "We were able to connect the mechanism responsible for the initiation of the veins in the leaf with that of formation of the shoot and root. With our piece of the puzzle added, it indeed seems the same mechanism is responsible for all these events."

What Scarpella and his research team--Dr. Thomas Berleth's group from the University of Toronto and Dr. Jiri Friml from the University of Tuebingen--discovered has interested scientists around the world. For several years it has been known that a hormone called auxin stimulated the formation of the veins. "It was believed that auxin would behave like man--build the streets on which man himself would travel," said Scarpella. "However, the theory argued that in each individual vein auxin could only run one way at any given time, making them sort of alternate one-way streets."

By labeling the protein that transports the hormone auxin with a fluorescent tag, he could then shine a light on the leaves and watch how auxin was being transported during vein formation. Thanks to this approach, the team identified cells within individual veins that transport the hormone auxin in two opposite directions. He also showed for the first time that the epidermis of the leaf is very important in the transport of this hormone and in the formation of the veins.

One of the objections to the idea that veins might act as a channel to transport auxin was that there were mutant leaves that produced dotted, rather than continuous veins for auxin to run through. But the research team showed that the leaves with the dotted veins were a mature version and that at an earlier stage, the veins were continuous and did act as transporters. "We didn't have the technology to see those early stages before and now we do," he said. "We now know that the veins are the backbone of the leaf and are somehow responsible for the final shape of the plant."

But one of the biggest discoveries, perhaps the one with the most evolutionary implications, is that plants use the same mechanism to regulate vein formation in the leaf and branch formation on the main trunk and on the main root. The finding that the leaf is like a two-dimensional model of a tree may change the way plant scientists work, says Scarpella. "If each leaf can make more than 100 veins, you can see the process over and over compared to the formation of branches in a big, three-dimensional slowly growing tree or the difficulties in studying root branching in their natural environment, which is the dirt," he said. "Our findings will contribute to the way we will manipulate plant development to our advantage. Once we know all the players in the game we will be able to say, we want more leaves on this, more branches on this one or fewer flowers on this plant."

This research was just published in Genes and Development. Commentaries on the work have appeared in Genes and Development, Cell and the Journal of Cell Biology.


Story Source:

The above story is based on materials provided by University of Alberta. Note: Materials may be edited for content and length.


Cite This Page:

University of Alberta. "Researchers Offer Clues To How Leaves Patterns Are Formed." ScienceDaily. ScienceDaily, 15 June 2006. <www.sciencedaily.com/releases/2006/06/060615180321.htm>.
University of Alberta. (2006, June 15). Researchers Offer Clues To How Leaves Patterns Are Formed. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2006/06/060615180321.htm
University of Alberta. "Researchers Offer Clues To How Leaves Patterns Are Formed." ScienceDaily. www.sciencedaily.com/releases/2006/06/060615180321.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
USDA Cracks Down On Imports From Foreign Puppy Mills

USDA Cracks Down On Imports From Foreign Puppy Mills

Newsy (Aug. 18, 2014) New USDA measures to regulate dog imports aim to crack down on buying dogs from overseas puppy mills. Video provided by Newsy
Powered by NewsLook.com
Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Newsy (Aug. 18, 2014) Researchers performed an experiment using an FDA-approved drug known as ruxolitinib. They found it to be successful in the majority of patients. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins