Featured Research

from universities, journals, and other organizations

Sequencing The Genome Of A New Kind Of Methane Producer

Date:
August 4, 2006
Source:
Max Planck Society
Summary:
Max Planck researchers uncover the survival strategy of microorganisms responsible for the worldwide emission of methane from rice paddies.

A mixed culture, used to sequence the complete genome of a methane producer, RC-I archaeon. Hybridisation, with specific probes for RC-I Archaea (red fluorescent cells) and bacteria (green fluorescent cells), help identify the various components of the mixed culture. The scale is 10 micrometres.
Credit: Image : Max Planck Institute for Terrestrial Microbiology

About 10 to 25 percent of the world's methane emissions come from flooded rice paddies. Methane is a greenhouse gas produced by various groups of microorganisms (methanogenic Archaea). Oxygen is usually highly toxic for these microorganisms. The major producer of methane in the roots of rice plants is what is known as "Rice Cluster I" (RC-I) Archaea.

The mechanisms that give these Archaea a competitive advantage remained unexplained, because it was impossible to get a pure culture of them. Now, scientists from the Max Planck Institute for Terrestrial Microbiology in Marburg, Germany and the Max Planck Institute for Molecular Genetics in Berlin have fully sequenced the genome of an RC-I archaeon from a methane-producing microbial mixed culture. From the genome sequence, the researchers were able to deduce the existence of a number of enzymatic mechanisms, unknown in methanogenic Archaea until now. The mechanisms help the RC-I Archaea to survive when oxygen is present. They allow the RC-I Archaea to adapt specifically to the oxygen-rich area around the roots of the rice plant. The results explain why RC-I Archaea have a selective survival advantage (Science, July 21, 2006).

In the current study, Max Planck researchers from Marburg and Berlin investigated the complete genome sequence of an RC-I archaeon that appears frequently in the mixed culture MRE50. As a rule, the starting point for analysis of a complete microbial genome is a pure culture - and its corresponding homogeneous component of genetic information. But in the case of RC-I Archaea, no pure culture was available. So all the genetic information of the mixed culture MRE 50 served as the starting point for sequencing the complete RC-I genome. Such heterogeneous genetic information, stemming from various microorganisms in the mixed culture, is called a metagenome. One particular analytical challenge was filtering out the complete, homogeneous genome of a defined RC-I archaeon from the metagenome. The researchers were able to do this using a specific bio-informatics analytical methodology.

The genome of the RC-I archaeon is made from 3.2 million base pairs, and codes for 3,103 proteins. The proteins can, among other things, be organized according to their methanogenic metabolism - that is, how they create methane simply by reducing carbon dioxide with hydrogen. Enzymes for the analysis of alternative methanogenic nutrients are not encoded by the RC-I genome. The RC-I archaeon can thus be categorised as hydrogenotroph Methanogenic Archaea can only produce methane, and the energy that comes from it, when oxygen is completely absent. The presence of oxygen is normally very hostile to them. However, this is not the case for RC-I Archaea - the RC-I genome codes for enzymatic mechanisms which are unique for methanogenic Archaea and make it possible for them to survive in an oxygenated environment. A whole group of enzymes belongs to this mechanism. These enzymes quickly detoxify highly reactive oxygen species, such as superoxide anion or hydrogen peroxide. These oxygen species are extremely toxic for living cells. When oxygen is present, RC-I Archaea quickly switch to a zymoma fermentative.

Sequencing the RC-I genome offers the groundwork for developing a means of monitoring the activity of RC-I Archaea in their natural environments, using molecular biological methods. It is uncertain, however, how long it will take before we can actually reduce the methane production of RC-I Archaea - and methane emissions from places like rice paddies.

This project was supported by the Max Planck Society and the German Federal Ministry of Education and Research (BMBF).


Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Sequencing The Genome Of A New Kind Of Methane Producer." ScienceDaily. ScienceDaily, 4 August 2006. <www.sciencedaily.com/releases/2006/08/060804102733.htm>.
Max Planck Society. (2006, August 4). Sequencing The Genome Of A New Kind Of Methane Producer. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2006/08/060804102733.htm
Max Planck Society. "Sequencing The Genome Of A New Kind Of Methane Producer." ScienceDaily. www.sciencedaily.com/releases/2006/08/060804102733.htm (accessed September 17, 2014).

Share This



More Plants & Animals News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins