Featured Research

from universities, journals, and other organizations

Making Molehills Out Of Mountains: Microscopic Geochemical Processes Point To Potential Problems If The Arctic Warms

Date:
August 5, 2006
Source:
University Of Arkansas, Fayetteville
Summary:
A little-known valley in northern Sweden holds evidence that warming temperatures may lead to significant changes in nutrient availability for plants and increasing amounts of greenhouse gases, a University of Arkansas researcher and his colleagues say.

Karkevagge Valley, where the long-term studies took place.
Credit: Image courtesy of University Of Arkansas, Fayetteville

A little-known valley in northern Sweden holds evidence that warming temperatures may lead to significant changes in nutrient availability for plants and increasing amounts of greenhouse gases, a University of Arkansas researcher and his colleagues say.

Related Articles


"Warming temperatures could have tremendous implications for global nutrient cycling and the so-called greenhouse gases," said John C. Dixon, a geosciences professor in the J. William Fulbright College of Arts and Sciences. Dixon, Robert Darmody, a soil scientist, and Colin Thorn, a geomorphologist, both at the University of Illinois, have recently completed 15 years of work at Kärkevagge, Swedish for "Valley of the Boulders." They studied rock, soil and water samples and conducted experiments in this pristine valley in northern Sweden, based at Abisko, the northernmost year-round operating science research station in the world, run by the Swedish Academy of Sciences.

Kärkevagge holds two advantages for researchers: First, it is a pristine environment, one untouched by human development. Second, the valley's high altitude allows the researchers to study geochemical processes in a cold climate considered to be a potential "hot spot" of precursors to rising global temperatures. "Climate models predict that the impacts of global warming are going to be greater at higher altitudes," Dixon said.

Historically, scientists thought that chemical processes were unimportant in cold climates because, they theorized, the low temperatures would slow down reactions. However, 25 years ago Dixon showed that this was not the case. "Landscape processes are driven more by water than temperature," Dixon said. Dixon, Thorn and Darmody studied weathering, or the processes by which rocks exposed to air and water change over time.

"Rocks at the surface are not stable," Dixon said. Boulders and pebbles may look the same over time to the naked eye, but microscopic changes wear at the rocks and break them apart, causing them to become rubble, then break them down further to become soil over time. This soil, given the right kind of chemistry, then can support plant life.

The scientists examined the geochemistry of all of the components of the valley -- the rock walls, the rock rubble and the soils -- as well as minerals in the river that drains from the valley. They took soil and rock samples and looked at the chemical, physical and mineral characteristics of each. They also examined the chemistry of the water and the discharge of water into the stream to calculate the impact of the water on the changing landscape.

"The chemical processes obviously act very slowly," Dixon said. To speed up the ability to understand these processes, the researchers buried limestone and granite discs in soil at different locations to get an idea of the primary environmental factors affecting rock breakdown and soil formation. They then examined them after five years and removed them after a decade.

"Weathering rates are driven by variability in moisture and plant cover as it relates to soil acidity," Dixon said. "Our rock studies have given us a window back in time."

They also provide a peek at possible future mechanisms for landscape change. If rising temperatures melt the permafrost in places like Kärkevagge, more liquid water will be released into the landscape through the rocks, rubble and solids in the valleys, increasing rates of weathering and changing the nutrient availability for plants and the chemical balances in the soil.

The researchers' work was sponsored by grants from the National Geographic Society and the National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University Of Arkansas, Fayetteville. "Making Molehills Out Of Mountains: Microscopic Geochemical Processes Point To Potential Problems If The Arctic Warms." ScienceDaily. ScienceDaily, 5 August 2006. <www.sciencedaily.com/releases/2006/08/060804140303.htm>.
University Of Arkansas, Fayetteville. (2006, August 5). Making Molehills Out Of Mountains: Microscopic Geochemical Processes Point To Potential Problems If The Arctic Warms. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2006/08/060804140303.htm
University Of Arkansas, Fayetteville. "Making Molehills Out Of Mountains: Microscopic Geochemical Processes Point To Potential Problems If The Arctic Warms." ScienceDaily. www.sciencedaily.com/releases/2006/08/060804140303.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) — For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) — An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) — The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins