Featured Research

from universities, journals, and other organizations

Penn Researchers Determine Structure Of Smallpox Virus Protein Bound To DNA

Date:
August 7, 2006
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have determined the structure of an important smallpox virus enzyme and how it binds to DNA. The enzyme, called a topoisomerase, is an important drug target for coming up with new ways to fight smallpox.

The smallpox virus topoisomerase enzyme-DNA complex (DNA, yellow; topoisomerase, blue; covalent bond between the topoisomerase and the DNA, pink sphere).
Credit: Image Kay Perry, PhD, Frederic D. Bushman, PhD, Gregory D. Van Duyne, PhD, University of Pennsylvania School of Medicine; Molecular Cell

Researchers at the University of Pennsylvania School of Medicine have determined the structure of an important smallpox virus enzyme and how it binds to DNA. The enzyme, called a topoisomerase, is an important drug target for coming up with new ways to fight smallpox. The researchers present their findings in the August 4 issue of Molecular Cell.

Related Articles


“This enzyme is one of the most closely studied DNA-modifying enzymes in biology,” says Frederic D. Bushman, PhD, Professor of Microbiology, one of the senior authors. “The structure of the DNA complex has been long-awaited.” DNA-modifying enzymes bind to specific sequences in the genetic code to aid in the many steps of DNA replication.

The smallpox virus is one of the most easily transmissible infectious diseases known to humans, resulting in up to 30 percent mortality. The efficiency with which it spreads, combined with the deadly nature of the disease, has raised fears that smallpox could be revived for use in bioterrorism. Knowing the exact three-dimensional structure of smallpox virus proteins could help researchers design antiviral agents, but few structures of whole viral proteins exist.

Poxviruses are large viruses that contain two strands of DNA and replicate themselves entirely in the cytoplasm of infected cells. Poxviruses do not take over the genetic machinery inside the nucleus of the host cell, as many viruses do. Because of this strategy, poxviruses encode many of the enzymes they need to replicate their own genes, and hence reproduce. One of these enzymes is a topoisomerase, which is used by the virus to relieve the excessive twisting of DNA strands that normally occurs during DNA replication and transcription of the viral genes. Upon initial infection, the poxviruses come already equipped with some proteins, including topoisomerases, to kick-start replication.

The structure was determined in a collaborative effort between the Bushman lab and the lab of the other senior author Gregory D. Van Duyne, PhD, Professor of Biochemistry and Biophysics and an Investigator with the Howard Hughes Medical Institute (HHMI). Using purified topoisomerase enzyme that had been expressed in bacterial cells, they bound the enzyme to short segments of DNA that contained the viral topoisomerase’s specific recognition sequence. They then determined the three-dimensional structure of the topoisomerase-DNA complex using X-ray crystallography.

One of the primary differences between the viral topoisomerase enzyme and the closely related human enzyme that functions in the nucleus of all human cells is that the viral enzyme only relaxes supercoiled DNA when it binds to specific DNA sequences. The structure of the poxvirus topoisomerase-DNA complex provides some important clues about how this recognition and activation mechanism works.

“The more the viral enzyme differs from the human nuclear enzyme, the more likely it is that inhibitors could be developed that are specific to the viral enzymes,” says Bushman.

Knowing the three-dimensional structure of the smallpox virus topoisomerase-DNA complex will also facilitate the design of agents to combat poxvirus infections. Topoisomerases are some of the most widely targeted proteins by drugs that are intended to inhibit growth of the cell. Drugs that target topoisomerases generally stabilize an intermediate of the enzyme’s reaction in which one of the DNA strands is broken. If these breaks are not repaired, the DNA cannot be replicated and the cell dies.

In the case of smallpox virus, the hope is that drugs targeted to the viral topoisomerase enzyme will prevent viral replication through a similar mechanism. The X-ray structure provides a template for designing small molecules that could stabilize the broken DNA in the intermediate form, thereby killing smallpox virus particles.

Study co-authors are Kay Perry and Young Hwang, both from Penn. The research was supported by HHMI and the National Institutes of Health through the Middle Atlantic Regional Center of Excellence.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Penn Researchers Determine Structure Of Smallpox Virus Protein Bound To DNA." ScienceDaily. ScienceDaily, 7 August 2006. <www.sciencedaily.com/releases/2006/08/060805131526.htm>.
University of Pennsylvania School of Medicine. (2006, August 7). Penn Researchers Determine Structure Of Smallpox Virus Protein Bound To DNA. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/08/060805131526.htm
University of Pennsylvania School of Medicine. "Penn Researchers Determine Structure Of Smallpox Virus Protein Bound To DNA." ScienceDaily. www.sciencedaily.com/releases/2006/08/060805131526.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins